login
A154373
Composites k such that gpf(k) - lpf(k) is an odd nonprime.
1
6, 12, 18, 22, 24, 34, 36, 44, 46, 48, 54, 58, 66, 68, 72, 74, 82, 88, 92, 94, 96, 102, 106, 108, 110, 116, 118, 132, 134, 136, 138, 142, 144, 148, 154, 158, 162, 164, 166, 170, 174, 176, 178, 184, 188, 192, 194, 198, 202, 204, 212, 214, 216, 220, 222, 226, 230
OFFSET
1,1
LINKS
EXAMPLE
6 = 3*2 and 3 - 2 = 1 (odd nonprime), so 6 is a term;
12 = 3*2*2 and 3 - 2 = 1 (odd nonprime), so 12 is a term;
18 = 3*3*2 and 3 - 2 = 1 (odd nonprime), so 18 is a term;
22 = 11*2 and 11 - 2 = 9 (odd nonprime), so 22 is a term.
MAPLE
A020639 := proc(n) numtheory[factorset](n) ; min(op(%)) ; end proc:
A006530 := proc(n) numtheory[factorset](n) ; max(op(%)) ; end proc:
for n from 1 to 500 do c := A006530(A002808(n)) - A020639(A002808(n)) ; if type(c, 'odd') and not isprime(c) then printf("%d, ", A002808(n) ) ; end if; end do: # R. J. Mathar, May 05 2010
MATHEMATICA
lpfQ[n_]:=Module[{fi=Transpose[FactorInteger[n]][[1]], c}, c= Last[fi]-First[fi]; OddQ[c]&&!PrimeQ[c]]; Select[Range[300], lpfQ] (* Harvey P. Dale, Nov 25 2012 *)
CROSSREFS
Cf. A002808 (composites), A141468 (odd nonprimes).
Cf. A006530 (gpf), A020639 (lpf).
Sequence in context: A160594 A315724 A146538 * A315725 A315726 A315727
KEYWORD
nonn
AUTHOR
EXTENSIONS
Corrected (69 replaced by 68, 203 removed) by R. J. Mathar, May 05 2010
STATUS
approved