login
A154369
Composites k such that gpf(k) mod lpf(k) is prime.
0
15, 33, 35, 45, 51, 65, 69, 75, 85, 87, 99, 115, 119, 123, 133, 135, 141, 143, 153, 159, 161, 165, 175, 177, 185, 207, 213, 215, 217, 225, 231, 235, 245, 249, 255, 259, 261, 265, 267, 297, 303, 319, 321, 323, 325, 329, 335, 339, 345, 357, 363, 365, 369, 375
OFFSET
1,1
EXAMPLE
Composite(35) = 51 = 17*3 and 17 mod 3 = 2 (prime), so 51 is a term.
Composite(46) = 65 = 13*5 and 13 mod 5 = 3 (prime), so 65 is a term.
Composite(53) = 75 = 5*5*3 and 5 mod 3 = 2 (prime), so 75 is a term.
MAPLE
A020639 := proc(n) numtheory[factorset](n) ; min(op(%)) ; end proc:
A006530 := proc(n) numtheory[factorset](n) ; max(op(%)) ; end proc:
for n from 1 to 500 do if isprime( A006530(A002808(n)) mod A020639(A002808(n)) ) then printf("%d, ", A002808(n) ) ; end if; end do: # R. J. Mathar, May 05 2010
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Corrected (133 inserted) and extended by R. J. Mathar, May 05 2010
STATUS
approved