This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A154336 A triangular sequence of coefficients of polynomials: p(x,n)=(3*(x - 1)^(n)*Sum[(((-1)^(n)*(2*k + 1)^(n - 1)))*x^k, {k,0, Infinity}] -2*(x - 1)^(n + 1)*Sum[((-1)^(n + 1)*k^n)*x^k, {k, 0, Infinity}]/x). 2
 1, 1, 1, 1, 10, 1, 1, 47, 47, 1, 1, 176, 558, 176, 1, 1, 597, 4442, 4442, 597, 1, 1, 1926, 29247, 65812, 29247, 1926, 1, 1, 6043, 173385, 747931, 747931, 173385, 6043, 1, 1, 18652, 965620, 7279396, 13712662, 7279396, 965620, 18652, 1, 1, 56993, 5173340, 64213532, 205619174, 205619174, 64213532, 5173340, 56993, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row sums are: {1, 2, 12, 96, 912, 10080, 128160, 1854720, 30240000, 550126080,...} LINKS G. C. Greubel, Table of n, a(n) for the first 50 rows FORMULA p(x,n)=(3*(x - 1)^(n)*Sum[(((-1)^(n)*(2*k + 1)^(n - 1)))*x^k, {k,0, Infinity}] -2*(x - 1)^(n + 1)*Sum[((-1)^(n + 1)*k^n)*x^k, {k, 0, Infinity}]/x). Functional form: p(x,n)=(3*(-1)^n* 2^(-1 + n)* (-1 + x)^n* LerchPhi(x, 1 - n, 1/2) - 2*(-1)^(1 + n) *(-1 + x)^(1 + n)* PolyLog( -n, x)/x). t(n,m)=Coefficients(p(x,n)) EXAMPLE {1}, {1, 1}, {1, 10, 1}, {1, 47, 47, 1}, {1, 176, 558, 176, 1}, {1, 597, 4442, 4442, 597, 1}, {1, 1926, 29247, 65812, 29247, 1926, 1}, {1, 6043, 173385, 747931, 747931, 173385, 6043, 1}, {1, 18652, 965620, 7279396, 13712662, 7279396, 965620, 18652, 1}, {1, 56993, 5173340, 64213532, 205619174, 205619174, 64213532, 5173340, 56993, 1} MATHEMATICA Clear[p, x, n]; p[x_, n_] = (3*(x - 1)^(n)*Sum[(((-1)^(n)*(2*k + 1)^(n - 1)))*x^k, {k, 0, Infinity}] - 2*(x - 1)^(n + 1)*Sum[((-1)^(n + 1)*k^n) * x^k, {k, 0, Infinity}]/x); Table[FullSimplify[ExpandAll[p[x, n]]], {n, 1, 10}]; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 1, 10}]; Flatten[%] CROSSREFS Sequence in context: A168524 A157277 A157629 * A174109 A171692 A152971 Adjacent sequences:  A154333 A154334 A154335 * A154337 A154338 A154339 KEYWORD nonn,tabl AUTHOR Roger L. Bagula, Jan 07 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 19:44 EDT 2019. Contains 323597 sequences. (Running on oeis4.)