login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A154244 a(n) = 6*a(n-1) - 2*a(n-2) for n>1; a(1)=1, a(2)=6. 8
1, 6, 34, 192, 1084, 6120, 34552, 195072, 1101328, 6217824, 35104288, 198190080, 1118931904, 6317211264, 35665403776, 201358000128, 1136817193216, 6418187159040, 36235488567808, 204576557088768, 1154988365396992 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Binomial transform of A126473.

lim_{n -> infinity} a(n)/a(n-1) = 3+sqrt(7) = 5.6457513110....

a(n) equals the number of words of length n-1 over {0,1,2,3,4,5} avoiding 01 and 02. - Milan Janjic, Dec 17 2015

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..500

Tomislav Doslic, Planar polycyclic graphs and their Tutte polynomials, Journal of Mathematical Chemistry, Volume 51, Issue 6, 2013, pp. 1599-1607. See Cor. 3.7(e).

Index entries for linear recurrences with constant coefficients, signature (6,-2).

FORMULA

a(n) = ((3 + sqrt(7))^n - (3 - sqrt(7))^n)/(2*sqrt(7)).

G.f.: x/(1-6*x+2*x^2). - Philippe Deléham, Jan 06 2009

MATHEMATICA

a[n_]:=(MatrixPower[{{1, 3}, {1, 5}}, n].{{1}, {1}})[[2, 1]]; Table[a[n], {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)

LinearRecurrence[{6, -2}, {1, 6}, 40] (* Vincenzo Librandi, Feb 02 2012 *)

PROG

(MAGMA) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-7); S:=[ ((3+r)^n-(3-r)^n)/(2*r): n in [1..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 07 2009

(MAGMA) I:=[1, 6]; [n le 2 select I[n] else 6*Self(n-1)-2*Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 02 2012

(Sage) [lucas_number1(n, 6, 2) for n in xrange(1, 22)] # Zerinvary Lajos, Apr 22 2009

(Maxima) a[1]:1$ a[2]:6$ a[n]:=6*a[n-1]-2*a[n-2]$ makelist(a[n], n, 1, 21);  // Bruno Berselli, May 30 2011

(PARI) Vec(1/(1-6*x+2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Dec 28 2011

CROSSREFS

Equals 1 followed by 2*A010913 (Pisot sequence E(3,17)).

Cf. A010465 (decimal expansion of square root of 7), A126473.

Sequence in context: A052264 A049608 A244937 * A273583 A126501 A218990

Adjacent sequences:  A154241 A154242 A154243 * A154245 A154246 A154247

KEYWORD

nonn,easy

AUTHOR

Al Hakanson (hawkuu(AT)gmail.com), Jan 05 2009

EXTENSIONS

Extended beyond a(7) by Klaus Brockhaus, Jan 07 2009

Edited by Klaus Brockhaus, Oct 06 2009

Name (corrected) from Philippe Deléham, Jan 06 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 22 20:19 EDT 2017. Contains 290951 sequences.