login
Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + ((n+1)^2*(n+2)^2*(2*n^2 +6*n +3)/12)*T(n-2, k-1), read by rows.
6

%I #16 Mar 06 2021 03:35:31

%S 1,1,1,1,278,1,1,1579,1579,1,1,6005,1233308,6005,1,1,18207,20504692,

%T 20504692,18207,1,1,47216,194715939,35816807848,194715939,47216,1,1,

%U 108993,1319518787,1302709376779,1302709376779,1319518787,108993,1,1,229819,7024500980,24830582225241,4330171226988158,24830582225241,7024500980,229819,1

%N Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + ((n+1)^2*(n+2)^2*(2*n^2 +6*n +3)/12)*T(n-2, k-1), read by rows.

%C Row sums are: {1, 2, 280, 3160, 1245320, 41045800, 36206334160, ...}.

%C The row sums of this class of sequences (see cross-references) is given by the following. Let S(n) be the row sum then S(n) = 2*S(n-1) + f(n)*S(n-2) for a given f(n). For this sequence f(n) = (n+1)^2*(n+2)^2*(2*n^2 +6*n +3)/12 = A000539(n+1). - _G. C. Greubel_, Mar 02 2021

%H G. C. Greubel, <a href="/A154231/b154231.txt">Rows n = 0..50 of the triangle, flattened</a>

%F T(n, k) = T(n-1, k) + T(n-1, k-1) + ((n+1)^2*(n+2)^2*(2*n^2 +6*n +3)/12)*T(n-2, k-1) with T(n, 0) = T(n, n) = 1.

%e Triangle begins as:

%e 1;

%e 1, 1;

%e 1, 278, 1;

%e 1, 1579, 1579, 1;

%e 1, 6005, 1233308, 6005, 1;

%e 1, 18207, 20504692, 20504692, 18207, 1;

%e 1, 47216, 194715939, 35816807848, 194715939, 47216, 1;

%e 1, 108993, 1319518787, 1302709376779, 1302709376779, 1319518787, 108993, 1;

%p T:= proc(n, k) option remember;

%p if k=0 or k=n then 1

%p else T(n-1, k) + T(n-1, k-1) + ((n+1)^2*(n+2)^2*(2*n^2+6*n+3)/12)*T(n-2, k-1)

%p fi; end:

%p seq(seq(T(n, k), k=0..n), n=0..12); # _G. C. Greubel_, Mar 02 2021

%t T[n_, k_]:= T[n,k]= If[k==0 || k==n, 1, T[n-1, k] + T[n-1, k-1] + ((n+1)^2*(n+2)^2*(2*n^2+6*n+3)/12)*T[n-2, k-1] ];

%t Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Mar 02 2021 *)

%o (Sage)

%o def f(n): return binomial(n+2,2)^2*(2*n^2+6*n+3)/3

%o def T(n,k):

%o if (k==0 or k==n): return 1

%o else: return T(n-1, k) + T(n-1, k-1) + f(n)*T(n-2, k-1)

%o flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Mar 02 2021

%o (Magma)

%o f:= func< n | Binomial(n+2,2)^2*(2*n^2+6*n+3)/3 >;

%o function T(n,k)

%o if k eq 0 or k eq n then return 1;

%o else return T(n-1, k) + T(n-1, k-1) + f(n)*T(n-2, k-1);

%o end if; return T;

%o end function;

%o [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Mar 02 2021

%Y Cf. A154227, A154228, A154229, A154230, A154233.

%Y Cf. A000539 (powers of 5).

%K nonn,tabl,easy

%O 0,5

%A _Roger L. Bagula_, Jan 05 2009

%E Edited by _G. C. Greubel_, Mar 02 2021