|
|
A154152
|
|
Indices k such that 26 plus the k-th triangular number is a perfect square.
|
|
2
|
|
|
4, 10, 37, 67, 220, 394, 1285, 2299, 7492, 13402, 43669, 78115, 254524, 455290, 1483477, 2653627, 8646340, 15466474, 50394565, 90145219, 293721052, 525404842, 1711931749, 3062283835, 9977869444, 17848298170, 58155284917, 104027505187, 338953840060
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 1..500
F. T. Adams-Watters, SeqFan Discussion, Oct 2009
Index entries for linear recurrences with constant coefficients, signature (1,6,-6,-1,1).
|
|
FORMULA
|
{k: 26+k*(k+1)/2 in A000290}.
a(n) = +a(n-1) +6*a(n-2) -6*a(n-3) -a(n-4) +a(n-5).
G.f.: x*(-4-6*x-3*x^2+6*x^3+5*x^4)/((x-1) * (x^2-2*x-1) * (x^2+2*x-1)).
G.f.: ( 10 + (-3-6*x)/(x^2+2*x-1) + 1/(x-1) + (12+27*x)/(x^2-2*x-1) )/2.
|
|
EXAMPLE
|
4*(4+1)/2+26 = 6^2. 10*(10+1)/2+26 = 9^2. 37*(37+1)/2+26 = 27^2. 67*(67+1)/2+26 = 48^2.
|
|
MATHEMATICA
|
Join[{4, 10}, Select[Range[0, 10^5], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 26 &]] (* or *) LinearRecurrence[{1, 6, -6, -1, 1}, {4, 10, 37, 67, 220}, 25] (* G. C. Greubel, Sep 03 2016 *)
|
|
PROG
|
(PARI) Vec(x*(-4-6*x-3*x^2+6*x^3+5*x^4)/((x-1)*(x^2-2*x-1)*(x^2+2*x-1)) + O(x^40)) \\ Colin Barker, Jul 11 2015
|
|
CROSSREFS
|
Cf. A000217, A000290, A006451.
Sequence in context: A197552 A052572 A079725 * A025237 A149188 A149189
Adjacent sequences: A154149 A154150 A154151 * A154153 A154154 A154155
|
|
KEYWORD
|
nonn,less,easy
|
|
AUTHOR
|
R. J. Mathar, Oct 18 2009
|
|
EXTENSIONS
|
Extended by D. S. McNeil, Dec 05 2010
|
|
STATUS
|
approved
|
|
|
|