login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A154152 Indices k such that 26 plus the k-th triangular number is a perfect square. 2
4, 10, 37, 67, 220, 394, 1285, 2299, 7492, 13402, 43669, 78115, 254524, 455290, 1483477, 2653627, 8646340, 15466474, 50394565, 90145219, 293721052, 525404842, 1711931749, 3062283835, 9977869444, 17848298170, 58155284917, 104027505187, 338953840060 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Colin Barker, Table of n, a(n) for n = 1..500

F. T. Adams-Watters, SeqFan Discussion, Oct 2009

Index entries for linear recurrences with constant coefficients, signature (1,6,-6,-1,1).

FORMULA

{k: 26+k*(k+1)/2 in A000290}.

a(n) = +a(n-1) +6*a(n-2) -6*a(n-3) -a(n-4) +a(n-5).

G.f.: x*(-4-6*x-3*x^2+6*x^3+5*x^4)/((x-1) * (x^2-2*x-1) * (x^2+2*x-1)).

G.f.: ( 10 + (-3-6*x)/(x^2+2*x-1) + 1/(x-1) + (12+27*x)/(x^2-2*x-1) )/2.

EXAMPLE

4*(4+1)/2+26 = 6^2. 10*(10+1)/2+26 = 9^2. 37*(37+1)/2+26 = 27^2. 67*(67+1)/2+26 = 48^2.

MATHEMATICA

Join[{4, 10}, Select[Range[0, 10^5], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 26 &]] (* or *) LinearRecurrence[{1, 6, -6, -1, 1}, {4, 10, 37, 67, 220}, 25] (* G. C. Greubel, Sep 03 2016 *)

PROG

(PARI) Vec(x*(-4-6*x-3*x^2+6*x^3+5*x^4)/((x-1)*(x^2-2*x-1)*(x^2+2*x-1)) + O(x^40)) \\ Colin Barker, Jul 11 2015

CROSSREFS

Cf. A000217, A000290, A006451.

Sequence in context: A197552 A052572 A079725 * A025237 A149188 A149189

Adjacent sequences:  A154149 A154150 A154151 * A154153 A154154 A154155

KEYWORD

nonn,less,easy

AUTHOR

R. J. Mathar, Oct 18 2009

EXTENSIONS

Extended by D. S. McNeil, Dec 05 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 16 18:53 EST 2019. Contains 320165 sequences. (Running on oeis4.)