Proof of conjectured recurrence for A154146

Robert Israel

July 18, 2019

A154146 is the set of nonnegative integers n such that $16+n(n+1) / 2$ is a square. If that square is y^{2} and $x=2 n+1$, this says

$$
\begin{equation*}
x^{2}=8 y^{2}-127 \tag{1}
\end{equation*}
$$

We must solve this Pell-type Diophantine equation. Note that all integer solutions of (1) have x odd, so $n=(x-1) / 2$ will be a member of A154146 if and only if (x, y) is a solution in positive integers of (1).

The matrix

$$
M=\left(\begin{array}{ll}
3 & 8 \\
1 & 3
\end{array}\right)
$$

leaves invariant the quadratic form $Q(x, y)=x^{2}-8 y^{2}$, so if $\binom{x}{y}$ is a solution of (1), so is

$$
M\binom{x}{y}=\binom{3 x+8 y}{x+3 y}
$$

Since both M and

$$
M^{-1}=\left(\begin{array}{cc}
3 & -8 \\
-1 & 3
\end{array}\right)
$$

have integer entries, $M\binom{x}{y}$ is an integer solution if and only if $\binom{x}{y}$ is.
The curve $x^{2}=8 y^{2}-127$ is a hyperbola, and multiplication by M maps the branch in the upper half plane to itself. Moreover, it increases the x coordinate of points on this branch. One point on that branch is $\binom{-1}{4}$, which M maps to $\binom{29}{11}$. Thus all positive integer solutions of (1) are of the form $M^{k}\binom{x}{y}$ where k is a nonnegative integer and $\binom{x}{y}$ is an integer solution with $y>0$ and $0 \leq x \leq 29$. By explicit enumeration we find that there are just two such solutions: $\binom{1}{4}$ and $\binom{29}{11}$. Thus the positive integer solutions are

$$
\begin{aligned}
& \binom{x_{n}}{y_{n}}, n \geq 0, \text { where } \\
& \qquad\binom{x_{0}}{y_{0}}=\binom{1}{4},\binom{x_{1}}{y_{1}}=\binom{29}{11},\binom{x_{n+2}}{y_{n+2}}=M\binom{x_{n}}{y_{n}}
\end{aligned}
$$

Since the characteristic polynomial of M is $\lambda^{2}-6 \lambda+1$, we find that $x_{n+4}-6 x_{n+2}+x_{n}=$ 0 . With $x_{n}=2 a_{n}+1$, this translates to $a_{n+4}-6 a_{n+2}+a_{n}=2$, and thus

$$
a_{n+5}-a_{n+4}-6 a_{n+3}+6 a_{n+2}+a_{n+1}-a_{n}=\left(a_{n+5}-6 a_{n+3}+a_{n+1}\right)-\left(a_{n+4}-6 a_{n+2}+a_{n}\right)=0
$$

which is the conjectured recurrence.

