login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A154142 Indices k such that 9 plus the k-th triangular number is a perfect square. 3

%I

%S 0,10,13,63,80,370,469,2159,2736,12586,15949,73359,92960,427570,

%T 541813,2492063,3157920,14524810,18405709,84656799,107276336,

%U 493415986,625252309,2875839119,3644237520,16761618730,21240172813,97693873263,123796799360,569401620850

%N Indices k such that 9 plus the k-th triangular number is a perfect square.

%H Robert Israel, <a href="/A154142/b154142.txt">Table of n, a(n) for n = 1..2351</a>

%H F. T. Adams-Watters, <a href="http://list.seqfan.eu/pipermail/seqfan/2009-October/002504.html">SeqFan Discussion</a>, Oct 2009

%F {k: 9+k*(k+1)/2 in A000290}

%F Conjectures: (Start)

%F a(n) = a(n-1) + 6*a(n-2) - 6*a(n-3) - a(n-4) + a(n-5).

%F G.f.: x^2*(10 +3*x -10*x^2 -x^3)/((1-x) * (x^2-2*x-1) * (x^2+2*x-1))

%F G.f.: ( 2 + (-5+4*x)/(x^2+2*x-1) + (6+17*x)/(x^2-2*x-1) + 1/(x-1) )/2. (End)

%F a(1..4) = (0,10,13,63); a(n) = 6*a(n-2) - a(n-4) + 2, for n > 4. - _Ctibor O. Zizka_, Nov 10 2009

%F From _Robert Israel_, Jul 07 2015: (Start)

%F These conjectures follow from the theory of Pell-like equations.

%F a(2*k+1) = (8 * A001109(k) -7 * A001541(k) - 1)/2.

%F a(2*k) = (8 * A001109(k) -9 * A001541(k) - 1)/2. (End)

%e 0*(0+1)/2+9 = 3^2. 10*(10+1)/2+9 = 8^2. 13*(13+1)/2+9 = 10^2. 63*(63+1)/2+9 = 45^2.

%p seq(seq((8*orthopoly[U](k+j,3) - (8 - (-1)^j)*orthopoly[T](k+j,3)-1)/2, j=0..1),k=0..20); # _Robert Israel_, Jul 07 2015

%t Join[{0}, Select[Range[0, 1000], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 9 &]] (* _G. C. Greubel_, Sep 03 2016 *)

%t Select[Range[0, 2 10^7], IntegerQ[Sqrt[9 + # (# + 1) / 2]] &] (* _Vincenzo Librandi_, Sep 03 2016 *)

%o (MAGMA) [n: n in [0..2*10^7] | IsSquare(9 + n*(n+1)/2)];

%o /* or */ [0] cat [n: n in [0..2*10^7] | (Ceiling(Sqrt(n*(n+ 1)/2)))^2-n*(n+1)/2 eq 9]; // _Vincenzo Librandi_, Sep 03 2016

%Y Cf. A000217, A000290, A006451, A001109, A001541.

%K nonn

%O 1,2

%A _R. J. Mathar_, Oct 18 2009

%E a(16)-a(24) from _Donovan Johnson_, Nov 01 2010

%E a(25)-a(30) from _Lars Blomberg_, Jul 07 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 6 20:37 EST 2021. Contains 341850 sequences. (Running on oeis4.)