login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A154142 Indices k such that 9 plus the k-th triangular number is a perfect square. 3
0, 10, 13, 63, 80, 370, 469, 2159, 2736, 12586, 15949, 73359, 92960, 427570, 541813, 2492063, 3157920, 14524810, 18405709, 84656799, 107276336, 493415986, 625252309, 2875839119, 3644237520, 16761618730, 21240172813, 97693873263, 123796799360, 569401620850 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Robert Israel, Table of n, a(n) for n = 1..2351

F. T. Adams-Watters, SeqFan Discussion, Oct 2009

FORMULA

{k: 9+k*(k+1)/2 in A000290}

Conjectures: (Start)

a(n) = a(n-1) + 6*a(n-2) - 6*a(n-3) - a(n-4) + a(n-5).

G.f.: x^2*(10 +3*x -10*x^2 -x^3)/((1-x) * (x^2-2*x-1) * (x^2+2*x-1))

G.f.: ( 2 + (-5+4*x)/(x^2+2*x-1) + (6+17*x)/(x^2-2*x-1) + 1/(x-1) )/2. (End)

a(1..4) = (0,10,13,63); a(n) = 6*a(n-2) - a(n-4) + 2, for n > 4. - Ctibor O. Zizka, Nov 10 2009

From Robert Israel, Jul 07 2015: (Start)

These conjectures follow from the theory of Pell-like equations.

a(2*k+1) = (8 * A001109(k) -7 * A001541(k) - 1)/2.

a(2*k) = (8 * A001109(k) -9 * A001541(k) - 1)/2. (End)

EXAMPLE

0*(0+1)/2+9 = 3^2. 10*(10+1)/2+9 = 8^2. 13*(13+1)/2+9 = 10^2. 63*(63+1)/2+9 = 45^2.

MAPLE

seq(seq((8*orthopoly[U](k+j, 3) - (8 - (-1)^j)*orthopoly[T](k+j, 3)-1)/2, j=0..1), k=0..20); # Robert Israel, Jul 07 2015

MATHEMATICA

Join[{0}, Select[Range[0, 1000], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 9 &]] (* G. C. Greubel, Sep 03 2016 *)

Select[Range[0, 2 10^7], IntegerQ[Sqrt[9 + # (# + 1) / 2]] &] (* Vincenzo Librandi, Sep 03 2016 *)

PROG

(Magma) [n: n in [0..2*10^7] | IsSquare(9 + n*(n+1)/2)];

/* or */ [0] cat [n: n in [0..2*10^7] | (Ceiling(Sqrt(n*(n+ 1)/2)))^2-n*(n+1)/2 eq 9]; // Vincenzo Librandi, Sep 03 2016

CROSSREFS

Cf. A000217, A000290, A006451, A001109, A001541.

Sequence in context: A062370 A069960 A219715 * A219804 A108761 A219455

Adjacent sequences: A154139 A154140 A154141 * A154143 A154144 A154145

KEYWORD

nonn

AUTHOR

R. J. Mathar, Oct 18 2009

EXTENSIONS

a(16)-a(24) from Donovan Johnson, Nov 01 2010

a(25)-a(30) from Lars Blomberg, Jul 07 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 16:05 EST 2022. Contains 358701 sequences. (Running on oeis4.)