

A154108


A000110 / (1,2,3,...): (convolved with (1,2,3,...) = Bell numbers.


2



1, 0, 2, 7, 27, 114, 523, 2589, 13744, 77821, 467767, 2972432, 19895813, 139824045
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

This is the sequence which must be convolved with (1,2,3,...,), offset 0, to generate the Bell numbers starting (1, 2, 5, 15, 52,...) offset 1;
equivalent to row sums of triangle A154109 = (1, 2, 5, 15, 52,...).
A variant of A011965. [From R. J. Mathar, Jan 07 2009]


LINKS

Table of n, a(n) for n=1..14.


FORMULA

A000110 / (1,2,3,...); where A000110 (the Bell numbers) begin with offset 1:
(1, 2, 5, 15, 52, 203, 877,...).
G.f.: (A000110(x)1)*(x1)^2, where A0000110(x) is the g.f. of the Bell numbers.  R. J. Mathar, Nov 27 2018


EXAMPLE

A000110(5) = 52 =(1, 0, 2, 7, 27 convolved with (1, 2, 3, 4, 5) = (5 + 0 + 6 + 14 + 27).


CROSSREFS

A000110, A154109
Sequence in context: A106225 A127897 A180473 * A011965 A150629 A150630
Adjacent sequences: A154105 A154106 A154107 * A154109 A154110 A154111


KEYWORD

nonn


AUTHOR

Gary W. Adamson, Jan 04 2009


STATUS

approved



