



1, 1, 3, 5, 15, 61, 207, 881, 4491, 21493, 117543, 710021, 4166279, 28107745
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

A000110 / A014182 = (the eigensequence of Pascal's triangle) /
(eigensequence of the inverse of Pascal's triangle).
A014182 = expansion of exp(1xexp(x)).


LINKS

Table of n, a(n) for n=0..13.


FORMULA

A000110 / A014182 = (1, 1, 2, 5, 15, 52, 203,...) / (1, 0, 1, 1, 2, 9, 9, 50,...).


EXAMPLE

A000110 = 52 = (1, 1, 3, 5, 15, 61) convolved with (1, 0, 1, 1, 2, 9)
= (61  5 + 3 + 2  9)


CROSSREFS

Cf. A000110, A014182
Sequence in context: A177814 A018702 A018719 * A018771 A214534 A175138
Adjacent sequences: A154104 A154105 A154106 * A154108 A154109 A154110


KEYWORD

nonn


AUTHOR

Gary W. Adamson, Jan 04 2009


STATUS

approved



