login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A154105 a(n) = 12*n^2 + 18*n + 7. 3
7, 37, 91, 169, 271, 397, 547, 721, 919, 1141, 1387, 1657, 1951, 2269, 2611, 2977, 3367, 3781, 4219, 4681, 5167, 5677, 6211, 6769, 7351, 7957, 8587, 9241, 9919, 10621, 11347, 12097, 12871, 13669, 14491, 15337, 16207, 17101, 18019, 18961, 19927, 20917, 21931 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n) is the number of partitions with three integral dissimilar components of the number 12(n+1), e.g for n=0, 12 may be partitioned in the 7 ways (1,2,9), (1,3,8), (1,4,7), (1,5,6), (2,3,7), (2,4,6) and (3,4,5). - Ian Duff, Jan 31 2010

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..3000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

G.f.: (7 + 16*x + x^2)/(1-x)^3.

a(n) = 6*A014106(n) + 7.

a(0) = 7; for n > 0, a(n) = a(n-1) + 24*n + 6.

a(-n-1) = 2*A085473(n) - 1. - Bruno Berselli, Sep 05 2011

E.g.f.: (7 + 30*x + 12*x^2)*exp(x). - G. C. Greubel, Sep 02 2016

EXAMPLE

a(2) = 12*2^2 + 18*2 + 7 = 91 = 6*14 + 7 = 6*A014106(2) + 7.

a(3) = a(2) + 24*3 + 6 = 91 + 72 + 6 = 169.

a(-4) = 12*4^2 - 18*4 + 7 = 127 = 2*64 - 1 = 2*A085473(3) - 1.

MATHEMATICA

Table[12*n^2 + 18*n + 7, {n, 0, 42}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2012 *)

LinearRecurrence[{3, -3, 1}, {7, 37, 91}, 25] (* G. C. Greubel, Sep 02 2016 *)

PROG

(MAGMA) [ 12*n^2+18*n+7: n in [0..40] ];

(PARI) a(n)=12*n^2+18*n+7 \\ Charles R Greathouse IV, Sep 02 2016

CROSSREFS

Cf. A014106, A153286, A085473.

Sequence in context: A031395 A138906 A107938 * A159491 A106064 A038862

Adjacent sequences:  A154102 A154103 A154104 * A154106 A154107 A154108

KEYWORD

nonn,easy

AUTHOR

Klaus Brockhaus, Jan 04 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 12:43 EST 2016. Contains 278735 sequences.