



7, 37, 91, 169, 271, 397, 547, 721, 919, 1141, 1387, 1657, 1951, 2269, 2611, 2977, 3367, 3781, 4219, 4681, 5167, 5677, 6211, 6769, 7351, 7957, 8587, 9241, 9919, 10621, 11347, 12097, 12871, 13669, 14491, 15337, 16207, 17101, 18019, 18961, 19927, 20917, 21931
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

a(n) is the number of partitions with three integral dissimilar components of the number 12(n+1), e.g for n=0, 12 may be partitioned in the 7 ways (1,2,9), (1,3,8), (1,4,7), (1,5,6), (2,3,7), (2,4,6) and (3,4,5). [From Ian Duff, Jan 31 2010]


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..3000
Index to sequences with linear recurrences with constant coefficients, signature (3,3,1).


FORMULA

G.f.: (7+16*x+x^2)/(1x)^3.
a(n) = 6*A014106(n)+7.
a(0) = 7; for n > 0, a(n) = a(n1)+24*n+6.
a(n1) = 2*A085473(n)1.  Bruno Berselli, Sep 05 2011


EXAMPLE

a(2) = 12*2^2+18*2+7 = 91 = 6*14+7 = 6*A014106(2)+7.
a(3) = a(2)+24*3+6 = 91+72+6 = 169.
a(4) = 12*4^218*4+7 = 127 = 2*641 = 2*A085473(3)1.


MATHEMATICA

Table[12*n^2 + 18*n + 7, {n, 0, 42}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2012 *)


PROG

(MAGMA) [ 12*n^2+18*n+7: n in [0..40] ];


CROSSREFS

Cf. A014106 (n*(2*n+3)), A153286, A085473.
Sequence in context: A031395 A138906 A107938 * A159491 A106064 A038862
Adjacent sequences: A154102 A154103 A154104 * A154106 A154107 A154108


KEYWORD

nonn,easy


AUTHOR

Klaus Brockhaus, Jan 04 2009


STATUS

approved



