login
a(n+2) = 16*a(n+1) - a(n), with a(1)=0, a(2)=4.
7

%I #36 Dec 31 2023 11:35:55

%S 0,4,64,1020,16256,259076,4128960,65804284,1048739584,16714029060,

%T 266375725376,4245297576956,67658385505920,1078288870517764,

%U 17184963542778304,273881127813935100,4364913081480183296

%N a(n+2) = 16*a(n+1) - a(n), with a(1)=0, a(2)=4.

%C If a(n)=x and a(n+1)=y, then 16=(x^2+y^2)/(xy+1).

%C In general, the sequence a(1)=0, a(2)=U; a(n+2)=U^2*a(n+1)-a(n) has the property that "If a(n)=x and a(n+1)=y then (x^2+y^2)/(xy+1)=U^2".

%H Vincenzo Librandi, <a href="/A154021/b154021.txt">Table of n, a(n) for n = 1..800</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (16,-1).

%F From _R. J. Mathar_, Jan 05 2011: (Start)

%F G.f.: 4*x^2/(1 -16*x +x^2).

%F a(n) = 4*A077412(n-2). (End)

%t Nest[Append[#,16Last[#]-#[[-2]]]&,{0,4},20] (* or *) Rest[CoefficientList[Series[4x^2/(1-16x+x^2), {x,0,22}], x]] (* _Harvey P. Dale_, Apr 17 2011 *)

%t LinearRecurrence[{16, -1}, {0, 4}, 20] (* _T. D. Noe_, Apr 17 2011 *)

%o (Magma) I:=[0,4]; [n le 2 select I[n] else 16*Self(n-1)-Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Feb 25 2012

%Y Cf. A065100, A154022-A154027.

%K nonn,easy

%O 1,2

%A _Vincenzo Librandi_, Jan 04 2009

%E 375725376 replaced by 266375725376 - _R. J. Mathar_, Jan 07 2009

%E Edited by _N. J. A. Sloane_, Jun 23 2010 at the suggestion of _Joerg Arndt_.