This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A153861 Triangle read by rows, binomial transform of triangle A153860. 5
 1, 1, 1, 2, 3, 1, 3, 6, 4, 1, 4, 10, 10, 5, 1, 5, 15, 20, 15, 6, 1, 6, 21, 35, 35, 21, 7, 1, 7, 28, 56, 70, 56, 28, 8, 1, 8, 36, 84, 126, 126, 84, 36, 9, 1, 9, 45, 120, 210, 252, 210, 120, 45, 10, 1, 10, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Row sums = A095121: (1, 2, 6, 14, 30, 62, 126,...). Triangle T(n,k), 0<=k<=n, read by rows, given by [1,1,-1,1,0,0,0,0,0,0,0,...] DELTA [1,0,-1,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 03 2009 A123110*A007318 as infinite lower triangular matrices. - Philippe Deléham, Jan 06 2009 A153861 is the fusion of polynomial sequences p(n,x)=x^n+x^(n-1)+...+x+1 and q(n,x)=(x+1)^n; see A193722 for the definition of fusion. - Clark Kimberling, Aug 06 2011 LINKS G. C. Greubel, Table of n, a(n) for the first 46 rows FORMULA Triangle read by rows, A007318 * A153860. Remove left two columns of Pascal's triangle and append (1, 1, 2, 3, 4, 5,...). As a recursive operation by way of example, row 3 = (3, 6, 4, 1) = [1, 1, 1, 0] * (flipped Pascal's triangle matrix) = [1, 3, 3, 1] [1, 2, 1, 0] [1, 1, 0, 0] [1, 0, 0, 0]. (Cf. analogous operation in A130405, but in A153861 the linear multiplier = [1,1,1,...,0].) T(n,k) = 2*T(n-1,k)+T(n-1,k-1)-T(n-2,k)-T(n-2,k-1), T(0,0) = T(1,0) = T(1,1) = T(2,2) = 1, T(2,0)=2, T(2,1)=3, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Dec 15 2013 G.f.: (1-x+x^2+x^2*y)/((x-1)*(-1+x+x*y)). - R. J. Mathar, Aug 11 2015 EXAMPLE First few rows of the triangle are: 1; 1, 1; 2, 3, 1; 3, 6, 4, 1; 4, 10, 10, 5, 1; 5, 15, 20, 15, 6, 1; 6, 21, 35, 35, 21, 7, 1; 7, 28, 56, 70, 56, 28, 8, 1; 8, 36, 84, 126, 126, 84, 36, 9, 1; 9, 45, 120, 210, 252, 210, 120, 45, 10, 1; ... MATHEMATICA z = 10; c = 1; d = 1; p[0, x_] := 1 p[n_, x_] := x*p[n - 1, x] + 1; p[n_, 0] := p[n, x] /. x -> 0; q[n_, x_] := (c*x + d)^n t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 g[n_] := CoefficientList[w[n, x], {x}] TableForm[Table[Reverse[g[n]], {n, -1, z}]] Flatten[Table[Reverse[g[n]], {n, -1, z}]]  (* A193815 *) TableForm[Table[g[n], {n, -1, z}]] Flatten[Table[g[n], {n, -1, z}]]   (* A153861 *) (* Clark Kimberling, Aug 06 2011 *) CROSSREFS Cf. A153860, A095121, A130405. Sequence in context: A086404 A192852 A152976 * A118981 A117938 A256193 Adjacent sequences:  A153858 A153859 A153860 * A153862 A153863 A153864 KEYWORD nonn,tabl AUTHOR Gary W. Adamson, Jan 03 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 19 12:35 EDT 2019. Contains 325159 sequences. (Running on oeis4.)