login
A153860
Triangle by columns: leftmost column = (1, 0, 1, -1, 1, -1, 1, ...); columns >1 = (1, 1, 0, 0, 0, ...).
5
1, 0, 1, 1, 1, 1, -1, 0, 1, 1, 1, 0, 0, 1, 1, -1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, -1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
OFFSET
1,1
COMMENTS
As an infinite lower triangular matrix M; M * [1,2,3,...] = A063210: (1, 2, 6, 6, 10, 10, 14, 14, ...
M * [1, 3, 5, 7, ...] = A047471, {1,3} mod 8. Eigensequence of the triangle = A066983 starting (1, 1, 3, 3, 7, 9, 17, 25, ...).
Binomial transform of the triangle = A153861. Row sums = A153284: (1, 1, 3, 1, 3, 1, 3, 1, ...).
LINKS
FORMULA
Triangle by columns: leftmost column = (1, 0, 1, -1, 1, ...); columns > 1 = (1, 1, 0, 0, 0, ...).
EXAMPLE
First few rows of the triangle:
1;
0, 1;
1, 1, 1;
-1, 0, 1, 1;
1, 0, 0, 1, 1;
-1, 0, 0, 0, 1, 1;
1, 0, 0, 0, 0, 1, 1;
-1, 0, 0, 0, 0, 0, 1, 1;
1, 0, 0, 0, 0, 0, 0, 1, 1;
...
PROG
(Haskell)
a153860 n k = a153860_tabl !! (n-1) !! (k-1)
a153860_row n = a153860_tabl !! (n-1)
a153860_tabl = [1] : [0, 1] : iterate (\(x:xs) -> -x : 0 : xs) [1, 1, 1]
-- Reinhard Zumkeller, Dec 16 2013
CROSSREFS
KEYWORD
tabl,sign
AUTHOR
Gary W. Adamson, Jan 03 2009
STATUS
approved