The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A153851 Nonzero coefficients of the g.f. that satisfies: A(x) = x + A(A(x))^3. 7
 1, 1, 6, 57, 683, 9474, 145815, 2430393, 43202448, 810629805, 15938815794, 326653743510, 6949638584208, 153009877730525, 3477623225388063, 81429702521625843, 1961136442605508341, 48513571089988199157 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Paul D. Hanna, Table of n, a(n) for n = 1..200 FORMULA G.f. A(x) = Sum_{n>=1} a(n)*x^(2*n-1) satisfies: (1) A(x) = Series_Reversion( x - A(x)^3 ). (2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^(3*n) / n!. - Paul D. Hanna, Sep 07 2020 (3) A(x) = x * exp( Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^(3*n)/x / n! ). - Paul D. Hanna, Sep 07 2020 (4) x = A(A( x-x^3 - A(x)^3 )). - Paul D. Hanna, Sep 07 2020 EXAMPLE G.f.: A(x) = x + x^3 + 6*x^5 + 57*x^7 + 683*x^9 + 9474*x^11 +... A(x - A(x)^3) = x where A(x)^3 = x^3 + 3*x^5 + 21*x^7 + 208*x^9 + 2517*x^11 + 34851*x^13 +... SYSTEM OF RELATED FUNCTIONS. A = A(x)/x is the unique solution to variable A in the infinite system of simultaneous equations: A = 1 + x^2*B^3; B = A + x^2*C^3; C = B + x^2*D^3; D = C + x^2*E^3; E = D + x^2*F^3; ... where the functions xB, xC, xD, etc., are successive iterations of A(x): x*A = A(x), x*B = A(A(x)) = g.f. of A153852, x*C = A(A(A(x))) = g.f. of A153853, x*D = A(A(A(A(x)))) = g.f. of A153854, etc. The nonzero coefficients of these functions begin: A:[1, 1, 6, 57, 683, 9474, 145815, 2430393, 43202448,...]; B:[1, 2, 15, 165, 2213, 33693, 561867, 10053141, 190489374,...]; C:[1, 3, 27, 339, 5067, 84738, 1536867, 29687772, 603835479,...]; D:[1, 4, 42, 594, 9827, 179928, 3545637, 73988631, 1618178067,...]; E:[1, 5, 60, 945, 17180, 342765, 7316178, 164606166, 3866962617,...]; F:[1, 6, 81, 1407, 27918, 603879, 13907133, 336334443, 8466942393,...]; G:[1, 7, 105, 1995, 42938, 1001973, 24795645, 642380025, 17278647147,...]; H:[1, 8, 132, 2724, 63242, 1584768, 41975610, 1160887350, 33260962995,..]; ... The main diagonal in the above table is A153850. PROG (PARI) {a(n)=local(A=x+x^2); for(i=0, n, A=serreverse(x-subst(A^3, x, x+x^2*O(x^(2*n))))) ; polcoeff(A, 2*n-1)} CROSSREFS Cf. A153852, A153853, A153854, A153850; variants: A139702, A213591. Sequence in context: A207412 A324447 A060435 * A141372 A306030 A152170 Adjacent sequences:  A153848 A153849 A153850 * A153852 A153853 A153854 KEYWORD nonn AUTHOR Paul D. Hanna, Jan 21 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 17:25 EST 2021. Contains 340363 sequences. (Running on oeis4.)