|
|
A153815
|
|
Indices of nontrivial zeros of the Riemann zeta function where the real part of zeta'(s) becomes negative.
|
|
8
|
|
|
127, 136, 196, 213, 233, 256, 289, 368, 379, 380, 399, 401, 462, 509, 519, 531, 568, 580, 596, 619, 627, 639, 655, 669, 693, 696, 705, 716, 729, 767, 779, 795, 796, 809, 820, 849, 858, 871, 888, 965, 994, 996
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
From Mats Granvik, Feb 21 2017: (Start)
Conjecture 1: Indices n of nontrivial zeros of the Riemann zeta function such that: abs(floor(im(zetazero(n))/(2*Pi)*log(im(zetazero(n))/(2*Pi*e)) + 7/8) - n + 1) = 1.
Conjecture 2: The zeta zeros with these indices are also the locations where the zeta zero counting sequence A135297 disagrees with the zeta zero counting function: (RiemannSiegelTheta(t) + im(log(zeta(1/2 + I*t))))/Pi + 1. The locations where the counting function overcounts are given by A282793, and the locations where the counting function undercounts are given by A282794.
Conjecture 3: Union of A282793 and A282794.
(End)
Floor(im(zetazero(n))/(2*Pi)*log(im(zetazero(n))/(2*Pi*e)) + 7/8) - n + 1 is the branch of the argument of zeta at the n-th zero on the critical line (conjectured). - Stephen Crowley, Mar 09 2017
|
|
LINKS
|
Table of n, a(n) for n=1..42.
Stephen Crowley, An Expression For The Argument of zeta at Zeros on the Critical Line, arXiv:1703.03490 [math.NT], 2017.
|
|
EXAMPLE
|
Re(zeta'(zetazero(127))) < 0.
|
|
MATHEMATICA
|
Select[Range[1000], N[Re[Zeta'[ZetaZero[ # ]]] < 0] &]
(* Conjecture 1: *) Monitor[Flatten[Position[Table[Abs[Floor[Im[ZetaZero[n]]/(2*Pi)*Log[Im[ZetaZero[n]]/(2*Pi*Exp[1])] + 7/8] - n + 1], {n, 1, 1000}], 1]], n] (* Mats Granvik, Feb 21 2017 *)
|
|
CROSSREFS
|
Cf. A002505, A135297, A153815, A273061, A282793, A282794, A282896, A282897.
Sequence in context: A075595 A133781 A255227 * A194634 A126096 A164966
Adjacent sequences: A153812 A153813 A153814 * A153816 A153817 A153818
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Vladimir Reshetnikov, Jan 02 2009
|
|
STATUS
|
approved
|
|
|
|