login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = Sum_{k=1..n} A003266(k).
1

%I #13 Feb 26 2020 15:33:57

%S 1,2,4,10,40,280,3400,68920,2296600,124819000,11029312600,

%T 1581276391000,367448845658200,138299522459392600,

%U 84276864426837376600,83129040425047907584600,132705616446736897029760600,342829213074356555028732544600

%N a(n) = Sum_{k=1..n} A003266(k).

%C Equals A000012 * A003266, where A000012 = the partial sum operator as an infinite lower triangular matrix.

%C a(n)+1 is divisible by 149 (a prime factor of Fibonacci(37)) for all n >= 36. The only values of n for which a(n)+1 is prime are: 1, 2, 3, 4, 5, 6, 10, 18. The corresponding primes are: 2, 3, 5, 11, 41, 281, 124819001, 342829213074356555028732544601. - _Amiram Eldar_, May 04 2017

%F Partial sums of A003266 terms.

%e a(4) = 10 = (1 + 1 + 2 + 6), where A003266 = (1, 1, 2, 6, 30, 240, 3120,...).

%t a[n_]:=Sum[Fibonorial[k], {k, n}]; Table[a[n],{n,1,10}]

%Y Cf. A003266, A153758 (partial sums).

%K nonn

%O 1,2

%A _Gary W. Adamson_, Dec 31 2008

%E More terms from _Amiram Eldar_, Feb 26 2020