The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A153745 Numbers k such that the number of digits d in k^2 is not prime and for each factor f of d the sum of the d/f digit groupings in k^2 of size f is a square. 10
 1, 2, 3, 39, 60, 86, 90, 321, 347, 401, 3387, 3414, 3578, 3900, 4767, 6000, 6549, 6552, 6744, 6780, 6783, 7387, 7862, 7889, 8367, 8598, 8600, 8773, 8898, 9000, 9220, 9884, 9885, 10000, 10001, 10002, 10003, 10004, 10005, 10010, 10011, 10012, 10013, 10020 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS This sequence is a subsequence of A061910. LINKS Chai Wah Wu, Table of n, a(n) for n = 1..3749 FORMULA a(n) = sqrt(A258660(n)). - Doug Bell, Jun 15 2015 EXAMPLE 39^2 = 1521; 1+5+2+1 = 9 = 3^2 and 15+21 = 36 = 6^2. 321^2 = 103041; 1+0+3+0+4+1 = 9 = 3^2; 10+30+41 = 81 = 9^2; and 103+041 = 144 = 12^2. PROG (PARI) isok(n) = {my(d = digits(n^2)); if (! isprime(#d), my(dd = divisors(#d)); for (k=1, #dd, my(tg = 10^dd[k]); my(s = 0); my(m = n^2); for (i=1, #d/dd[k], s += m % tg; m = m\tg; ); if (! issquare(s), return(0)); ); return (1); ); } \\ Michel Marcus, Jun 06 2015 (Python) from sympy import divisors from gmpy2 import is_prime, isqrt_rem, isqrt, is_square A153745_list = [] for l in range(1, 20): ....if not is_prime(l): ........fs = divisors(l) ........a, b = isqrt_rem(10**(l-1)) ........if b > 0: ............a += 1 ........for n in range(a, isqrt(10**l-1)+1): ............ns = str(n**2) ............for g in fs: ................y = 0 ................for h in range(0, l, g): ....................y += int(ns[h:h+g]) ................if not is_square(y): ....................break ............else: ................A153745_list.append(n) # Chai Wah Wu, Jun 08 2015 CROSSREFS Cf. A004159, A061910, A258660. Subsequences: A153746, A153747, A153748, A153749, A153750, A153751, A153752, A153753. Sequence in context: A060813 A039820 A331204 * A076724 A080393 A111683 Adjacent sequences: A153742 A153743 A153744 * A153746 A153747 A153748 KEYWORD nonn,base AUTHOR Doug Bell, Dec 31 2008 EXTENSIONS Data corrected by Doug Bell, Jan 19 2009 Name corrected by Doug Bell, Jun 06 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 09:43 EST 2022. Contains 358407 sequences. (Running on oeis4.)