login
A153668
Greatest number m such that the fractional part of (3/2)^A153664(n) >= 1-(1/m).
8
2, 14, 222, 1772, 2747, 12347, 135794, 90529, 222246, 570361, 2134829, 6901329, 4600886, 3067257, 5380892, 75503109, 814558605, 543039070, 362026046, 241350697, 160900465, 107266976, 101721580, 190708740, 127139160
OFFSET
1,1
FORMULA
a(n) = floor(1/(1-fract((3/2)^A153664(n)))), where fract(x) = x-floor(x).
EXAMPLE
a(2)=14, since 1-(1/15)=0.933...>fract((3/2)^A153664(2))=fract((3/2)^14)=0.929...>=1-(1/14).
MATHEMATICA
A153664 = {1, 14, 163, 1256, 2677, 8093, 49304, 49305, 158643, 164000, 835999, 2242294, 2242295, 2242296, 3965133, 25380333, 92600006, 92600007, 92600008, 92600009, 92600010, 92600011, 9267816, 125040717, 125040718};
Table[fp = FractionalPart[(3/2)^A153664[[n]]]; m = Floor[1/(1 - fp)];
While[fp >= 1 - (1/m), m++]; m - 1, {n, 1, Length[A153664]}] (* Robert Price, Mar 26 2019 *)
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, Dec 31 2008
EXTENSIONS
a(11)-a(25) from Robert Price, May 10 2012
STATUS
approved