login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A153644 a(n) = 4*n^2 + 28*n + 10. 1
42, 82, 130, 186, 250, 322, 402, 490, 586, 690, 802, 922, 1050, 1186, 1330, 1482, 1642, 1810, 1986, 2170, 2362, 2562, 2770, 2986, 3210, 3442, 3682, 3930, 4186, 4450, 4722, 5002, 5290, 5586, 5890, 6202, 6522, 6850, 7186, 7530, 7882, 8242, 8610, 8986, 9370 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Sequence gives values of x such that x^3 + 39x^2 = y^2 since a(n)^3 + 39*a(n)^2 = (8n^3 + 84n^2 + 216n + 70)^2.

a(n) = 2*(seventh diagonal to A153238).

About the first comment, naturally, the complete list of nonnegative values of x in x^3 + 39x^2 = y^2 is given by x = n^2-39 with n>6. - Bruno Berselli, Jan 25 2012

a(n) + 39 is a square. - Vincenzo Librandi, Aug 24 2016

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

From Colin Barker, Jan 24 2012: (Start)

a(1)=42, a(2)=82, a(3)=130, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).

G.f.: 2*x*((3-x)*(7-5*x))/(1-x)^3. (End)

E.g.f.: 2*(-5 + (5 + 16*x + 2*x^2)*exp(x)). - G. C. Greubel, Aug 23 2016

MATHEMATICA

LinearRecurrence[{3, -3, 1}, {42, 82, 130}, 25] (* G. C. Greubel, Aug 23 2016 *)

PROG

(PARI) a(n)=4*n*(n+7)+10 \\ Charles R Greathouse IV, Jan 24 2012

(MAGMA) [4*n^2 + 28*n + 10: n in [1..50]]; // Vincenzo Librandi, Jan 25 2012

CROSSREFS

Cf. A153238, A067076.

Sequence in context: A303283 A135850 A250381 * A172437 A160283 A019283

Adjacent sequences:  A153641 A153642 A153643 * A153645 A153646 A153647

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Dec 30 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 17 22:32 EDT 2018. Contains 313817 sequences. (Running on oeis4.)