login
Jacobsthal numbers A001045 incremented by 2.
6

%I #24 Sep 08 2022 08:45:40

%S 2,3,3,5,7,13,23,45,87,173,343,685,1367,2733,5463,10925,21847,43693,

%T 87383,174765,349527,699053,1398103,2796205,5592407,11184813,22369623,

%U 44739245,89478487,178956973,357913943,715827885,1431655767,2863311533,5726623063

%N Jacobsthal numbers A001045 incremented by 2.

%H G. C. Greubel, <a href="/A153643/b153643.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,-2).

%F a(n) = 2 + A001045(n) = A001045(n) + A007395(n) = 1 + A128209(n).

%F a(n) - A010684(n) = A078008(n), first differences of A001045. - _Paul Curtz_, Jan 17 2009

%F G.f.: (2 - x - 5*x^2)/((1+x)*(1-x)*(1-2*x)). - _R. J. Mathar_, Jan 23 2009

%F a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n >= 3. - _Andrew Howroyd_, Feb 26 2018

%t LinearRecurrence[{1,2},{0,1}, 40] + 2 (* _Harvey P. Dale_, May 26 2014 *)

%t LinearRecurrence[{2,1,-2},{2,3,3}, 40] (* _Georg Fischer_, Apr 02 2019 *)

%o (PARI) my(x='x+O('x^40)); Vec( (2-x-5*x^2)/((1-x^2)*(1-2*x)) ) \\ _G. C. Greubel_, Apr 02 2019

%o (Magma) I:=[2,3,3]; [n le 3 select I[n] else 2*Self(n-1) +Self(n-2) -2*Self(n-3): n in [1..40]]; // _G. C. Greubel_, Apr 02 2019

%o (Sage) ((2-x-5*x^2)/((1-x^2)*(1-2*x))).series(x, 40).coefficients(x, sparse=False) # _G. C. Greubel_, Apr 02 2019

%o (GAP) a:=[2,3,3];; for n in [4..40] do a[n]:=2*a[n-1]+a[n-2]-2*a[n-3]; od; a; # _G. C. Greubel_, Apr 02 2019

%Y Cf. A001045, A007395, A010684, A078008, A128209.

%K nonn,easy

%O 0,1

%A _Paul Curtz_, Dec 30 2008

%E Edited and extended by _R. J. Mathar_, Jan 23 2009