login
Triangle T(n,m) = (A006882(2*n + 1))^2 / ( A006882(2*m+1) * A006882(2*n-2*m+1) ).
1

%I #10 Aug 22 2016 04:39:32

%S 1,3,3,15,25,15,105,245,245,105,945,2835,3969,2835,945,10395,38115,

%T 68607,68607,38115,10395,135135,585585,1288287,1656369,1288287,585585,

%U 135135,2027025,10135125,26351325,41409225,41409225,26351325,10135125,2027025

%N Triangle T(n,m) = (A006882(2*n + 1))^2 / ( A006882(2*m+1) * A006882(2*n-2*m+1) ).

%C Row sums are 1, 6, 55, 700, 11529, 234234, 5674383, 159845400, 5136642225, 185498257230, 7438043704455...

%H G. C. Greubel, <a href="/A153512/b153512.txt">Table of n, a(n) for n = 0..1034</a>

%F T(n,m)= A006882(2*n + 1)*Pi*Gamma(2*n + 2)/(n!*4^(n + 1)*Gamma(m + 3/2)*Gamma(n + 3/2 - m) ).

%e 1;

%e 3, 3;

%e 15, 25, 15;

%e 105, 245, 245, 105;

%e 945, 2835, 3969, 2835, 945;

%e 10395, 38115, 68607, 68607, 38115, 10395;

%e 135135, 585585, 1288287, 1656369, 1288287, 585585, 135135;

%e 2027025, 10135125, 26351325, 41409225, 41409225, 26351325, 10135125, 2027025;

%e 34459425, 195270075, 585810225, 1087933275, 1329696225, 1087933275, 585810225, 195270075, 34459425;

%e 654729075, 4146617475, 14098499415, 30211070175, 43638212475, 43638212475, 30211070175, 14098499415, 4146617475, 654729075;

%e 13749310575, 96245174025, 365731661295, 888205463145, 1480342438575, 1749495609225, 1480342438575, 888205463145, 365731661295, 96245174025, 13749310575;

%t T[n_, m_] = (2*n + 1)!!* Pi*Gamma[2*n + 2]/(n!*4^(n + 1)*Gamma[m + 3/ 2]*Gamma[n + 3/2 - m]);

%t Table[Table[T[n, m], {m, 0, n}], {n, 0, 10}];

%t Flatten[%]

%K nonn,tabl

%O 0,2

%A _Roger L. Bagula_, Dec 28 2008

%E Definition replaced by an integer expression by the Assoc. Editors of the OEIS, Feb 24 2010