The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A153508 Sarrus numbers A001567 that are not Carmichael numbers A002997. 9
 341, 645, 1387, 1905, 2047, 2701, 3277, 4033, 4369, 4371, 4681, 5461, 7957, 8321, 8481, 10261, 11305, 12801, 13741, 13747, 13981, 14491, 15709, 16705, 18705, 18721, 19951, 23001, 23377, 25761, 30121, 30889, 31417, 31609, 31621, 33153, 34945 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A composite number n is a Fermat pseudoprime to base b if and only if b^(n-1) == 1 (mod n). Fermat pseudoprimes to base 2 are sometimes called Poulet numbers, Sarrus numbers, or frequently just pseudoprimes. For any given base pseudoprimes will contain Carmichael numbers as a subset. This sequence consists of base 2 Fermat pseudoprimes without the Carmichaels. LINKS Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..306 from Brad Clardy) MAPLE filter:= proc(n) local q;    if isprime(n) then return false fi;    if 2 &^(n-1) mod n <> 1 then return false fi;    if not numtheory:-issqrfree(n) then return true fi;    for q in numtheory:-factorset(n) do      if (n-1) mod (q-1) <> 0 then return true fi;    od:    false end proc: select(filter, [\$1..10^5]); # Robert Israel, Dec 29 2014 MATHEMATICA Select[Range[3, 35000, 2], !PrimeQ[#] && PowerMod[2, # - 1, # ] == 1 && !Divisible[# - 1, CarmichaelLambda[#]] &] (* Amiram Eldar, Jun 25 2019 *) PROG (MAGMA) for n:= 3 to 1052503 by 2 do   if (IsOne(2^(n-1) mod n)       and not IsPrime(n)       and not n mod CarmichaelLambda(n) eq 1)       then n;       end if; end for; // Brad Clardy, Dec 25 2014 CROSSREFS Cf. A001567, A002997. Sequence in context: A043685 A043576 A215326 * A216170 A321868 A175736 Adjacent sequences:  A153505 A153506 A153507 * A153509 A153510 A153511 KEYWORD nonn AUTHOR Artur Jasinski, Dec 28 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 07:59 EDT 2021. Contains 343030 sequences. (Running on oeis4.)