

A153491


Triangle T(n,m)= 11*binomial(n,k)  8 read by rows, 0<=k<=n.


1



3, 3, 3, 3, 14, 3, 3, 25, 25, 3, 3, 36, 58, 36, 3, 3, 47, 102, 102, 47, 3, 3, 58, 157, 212, 157, 58, 3, 3, 69, 223, 377, 377, 223, 69, 3, 3, 80, 300, 608, 762, 608, 300, 80, 3, 3, 91, 388, 916, 1378, 1378, 916, 388, 91, 3, 3, 102, 487, 1312
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Row sums are 3(n+1) + 11*(2^n  n  1) = 3, 6, 20, 56, 136,...


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1034


EXAMPLE

3;
3,3;
3,14,3;
3,25,25,3;
3,36,58,36,3;
3,47,102,102,47,3;
3,58,157,212,157,58,3;
3,69,223,377,377,223,69,3;
3,80,300,608,762,608,300,80,3;


MATHEMATICA

T[n_, m_] = If[n == 1, 3, If[m == 0  m == n, 3, 11*Binomial[n, k]  8]]
a1 = Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}];
Flatten[a1]


CROSSREFS

Cf. A131065
Sequence in context: A024725 A269562 A214730 * A287505 A288124 A286865
Adjacent sequences: A153488 A153489 A153490 * A153492 A153493 A153494


KEYWORD

nonn,tabl


AUTHOR

Roger L. Bagula and Gary W. Adamson, Dec 27 2008


EXTENSIONS

Definition and terms regularized.  R. J. Mathar, Jul 11 2012


STATUS

approved



