login
Decimal expansion of log_3 (6).
2

%I #22 Aug 21 2023 09:51:52

%S 1,6,3,0,9,2,9,7,5,3,5,7,1,4,5,7,4,3,7,0,9,9,5,2,7,1,1,4,3,4,2,7,6,0,

%T 8,5,4,2,9,9,5,8,5,6,4,0,1,3,1,8,8,0,4,2,7,8,7,0,6,5,4,9,4,3,8,3,8,6,

%U 8,5,2,0,1,3,8,0,9,1,4,8,0,5,0,6,1,1,7,2,6,8,8,5,4,9,4,5,1,7,4

%N Decimal expansion of log_3 (6).

%C Equals the Hausdorff dimension of Pascal's triangle modulo 3 (A083093). In general, the dimension of Pascal's triangle modulo a prime p is log(p*(p+1)/2) / log(p) (see Reiter link, theorem 2 page 117). - _Bernard Schott_, Dec 01 2022

%H Vincenzo Librandi, <a href="/A153459/b153459.txt">Table of n, a(n) for n = 1..1000</a>.

%H A. M. Reiter, <a href="https://www.mathstat.dal.ca/FQ/Scanned/31-2/reiter.pdf">Determining the dimension of fractals generated by Pascal's triangle</a>, Fibonacci Quarterly, 31(2), 1993, pp. 112-120.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/List_of_fractals_by_Hausdorff_dimension">List of fractals by Hausdorff dimension</a> (see Pascal triangle modulo 3).

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>

%F Equals A016629 / A002391 = 1 + A102525. - _Bernard Schott_, Dec 01 2022

%e 1.6309297535714574370995271143427608542995856401318804278706...

%p evalf(log(6)/log(3),80); # _Bernard Schott_, Dec 01 2022

%t RealDigits[Log[3, 6], 10, 120][[1]] (* _Vincenzo Librandi_, Aug 29 2013 *)

%Y cf. A002391, A016629, A083093, A102525.

%K nonn,cons

%O 1,2

%A _N. J. A. Sloane_, Oct 30 2009