login
Numbers m such that all 11 numbers 10^k*m+1; k=0,1,...,9 & 10 are prime.
2

%I #6 Jul 06 2022 10:05:17

%S 89468493268,342174928102,1124855005456,1183450662310,1885504856592,

%T 2425861640748,2926121345812,3713879215312,3984048347706,

%U 4181062989166,4335021717418,5232993739512,6009549731752,6406772991528,7451945623752,8329610667490,8533933744882,9374871820930,9425264464140,9578838492160

%N Numbers m such that all 11 numbers 10^k*m+1; k=0,1,...,9 & 10 are prime.

%C If m & n are in the sequence, k<11 and r=m*n*10^k -1 is prime then r has at least k+1 representations of the form p*q-(p+q)where p & q are prime.

%H Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_482.htm">Two Bergot questions</a>

%Y Cf. A153431, A153432.

%K nonn

%O 1,1

%A _Farideh Firoozbakht_, Apr 02 2009

%E A153433 a(3)-a(20) from _Don Reble_, Jul 06 2022