login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A153390 G.f.: A(x) = F(x*G(x))^2 where F(x) = G(x*F(x)) = 1 + x*F(x)^3 is the g.f. of A001764 and G(x) = F(x/G(x)) = 1 + x*G(x)^2 is the g.f. of A000108 (Catalan). 2
1, 2, 9, 48, 278, 1696, 10736, 69886, 465019, 3149476, 21643433, 150554144, 1058101315, 7502183626, 53599160532, 385494328218, 2788827078507, 20280590381098, 148167425970522, 1087007419753186, 8004683588800899 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..20.

FORMULA

a(n) = Sum_{k=0..n} C(3k+2,k)*2/(3k+2) * C(2n-k,n-k)*k/(2n-k) for n>0 with a(0)=1.

G.f. satisfies: A(x*F(x)) = F(x*F(x)^2)^2 where F(x) is the g.f. of A001764.

EXAMPLE

G.f.: A(x) = F(x*G(x))^2 = 1 + 2*x + 9*x^2 + 48*x^3 + 278*x^4 +... where

F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...

F(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...

F(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 + 7752*x^6 +...

G(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...

G(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...

PROG

(PARI) {a(n)=if(n==0, 1, sum(k=0, n, binomial(3*k+2, k)*2/(3*k+2)*binomial(2*(n-k)+k, n-k)*k/(2*(n-k)+k)))}

CROSSREFS

Cf. A000108, A001764; A153299, A153391.

Sequence in context: A174687 A047059 A153297 * A118341 A171803 A100427

Adjacent sequences:  A153387 A153388 A153389 * A153391 A153392 A153393

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jan 15 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 14 07:04 EDT 2020. Contains 336477 sequences. (Running on oeis4.)