

A153368


Number of zigzag paths from top to bottom of a rectangle of width 11 with n rows.


5



11, 20, 38, 72, 138, 264, 508, 976, 1882, 3624, 6996, 13488, 26054, 50264, 97124, 187440, 362250, 699240, 1351492, 2609008, 5042950, 9735768, 18818772, 36332016, 70229066, 135588200, 262091348, 506012592, 978124038, 1888445784, 3650380228
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Heuristically, a(n) = +6*a(n2) 9*a(n4) +2*a(n6).  R. J. Mathar, Jun 16 2011
Number of words of length n using a 11 symbol alphabet where neighboring letters are neighbors in the alphabet.  Andrew Howroyd, Apr 17 2017


LINKS

Table of n, a(n) for n=1..31.
Joseph Myers, BMO 20082009 Round 1 Problem 1Generalisation


FORMULA

Empirical G.f.: x*(11+20*x28*x^248*x^3+9*x^4+12*x^5)/((12*x^2)*(14*x^2+x^4)).  Colin Barker, Apr 17 2012
a(n) = A153369(n) + A153370(n).  Andrew Howroyd, Apr 17 2017


MATHEMATICA

b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i == 0, Sum[b[n  1, j, k], {j, 1, k}], If[i>1, b[n1, i1, k], 0] + If[i<k, b[n1, i+1, k], 0]]];
a[n_] := b[n, 0, 11];
Array[a, 31] (* JeanFrançois Alcover, Jul 01 2018, after Alois P. Heinz *)


CROSSREFS

Column 11 of A220062.
Cf. A153369, A153370, A153371, A153372 (bisection), A153373.
Sequence in context: A109376 A100038 A160843 * A068600 A158235 A158245
Adjacent sequences: A153365 A153366 A153367 * A153369 A153370 A153371


KEYWORD

easy,nonn


AUTHOR

Joseph Myers, Dec 24 2008


STATUS

approved



