login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A153359 Scaled coefficients of the M. O. Rubinstein polynomials. 0
1, -1, 1, -2, -1, 3, -2, -1, 2, 1, -152, -78, 125, 90, 15, -216, -114, 157, 135, 35, 3, -41424, -22444, 27552, 26551, 8505, 1197, 63, -66000, -36620, 40976, 42917, 15652, 2814, 252, 9, -13037952, -7390832, 7652084, 8557940, 3414775, 714840, 83790, 5220, 135, -21995904 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

The polynomials alpha_{k}(s) are defined in formula (1.4) in the paper cited below. The coefficients are in ascending order.

LINKS

Table of n, a(n) for n=0..45.

M. O. Rubinstein, Identities for the Riemann Zeta function., arXiv:0812.2592 [math.NT]

FORMULA

The coefficients of the polynomials alpha_{k}(s)*A053657(k) where alpha_{0}(s) = 1 and alpha_{k+1}(s) = (s-1)/(k+2)-sum(j=1..k,((j-(s-1)*(k-j+1))/(k-j+2))*alpha_{j}(s))/(k+1).

EXAMPLE

alpha_{0}(t) = 1 / 1;

alpha_{1}(t) = (-1 + t) / 2;

alpha_{2}(t) = (-2 - t + 3t^2) / 24;

alpha_{3}(t) = (-2 - t + 2t^2 + t^3) / 48;

MATHEMATICA

alpha[0, _] = 1; alpha[k_, s_] := (s - 1)/(k + 1) - Sum[((j - (s - 1)*(k - j))/(k - j + 1))*alpha[j, s]/(k), {j, 1, k - 1}] // Expand;

a53657[n_] := Product[p^Sum[Floor[(n - 1)/((p - 1) p^k)], {k, 0, n}], {p, Prime[Range[n]]}];

row[k_] := CoefficientList[alpha[k, t]*a53657[k + 1], t];

Table[row[k], {k, 0, 7}] // Flatten (* Jean-Fran├žois Alcover, Jul 19 2018 *)

CROSSREFS

Cf. A053657.

Sequence in context: A026176 A026141 A089209 * A240474 A023510 A005678

Adjacent sequences:  A153356 A153357 A153358 * A153360 A153361 A153362

KEYWORD

easy,sign,tabl

AUTHOR

Peter Luschny, Dec 24 2008

EXTENSIONS

More terms from Giovanni Resta, Jul 19 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 26 01:30 EDT 2019. Contains 326324 sequences. (Running on oeis4.)