login
Binomial transform of triangle A046854 (shifted).
3

%I #15 Dec 11 2019 09:49:11

%S 1,2,0,4,1,0,8,4,1,0,16,12,5,1,0,32,32,18,6,1,0,64,80,56,25,7,1,0,128,

%T 192,160,88,33,8,1,0,256,448,432,280,129,42,9,1,0,512,1024,1120,832,

%U 450,180,52,10,1,0,1024,2304,2816,2352,1452,681,242,63,11,1,0

%N Binomial transform of triangle A046854 (shifted).

%C Row sums = odd indexed Fibonacci numbers.

%C Mirror image of triangle in A121462. - _Philippe Deléham_, Dec 31 2008

%C Triangle T(n,k), 0 <= k <= n, read by rows given by [2,0,0,0,0,0,0,0,0,0,0,0,...] DELTA [0,1/2,1/2,0,0,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - _Philippe Deléham_, Jan 01 2009

%F Triangle read by rows, A007318 * A046854 (shifted down 1 row, inserting a "1" at (0,0).

%F G.f.: (1-y*x)/(1-2*x-y*x+y*x^2). - _Philippe Deléham_, Mar 27 2012

%F T(n,k) = 2*T(n-1,l) + T(n-1,k-1) - T(n-2,k-1), T(0,0) = 1, T(1,0) = 2, T(1,1) = 0 and T(n,k) = 0 if k<0 or if k>n. - _Philippe Deléham_, Mar 27 2012

%e First few rows of the triangle =

%e 1;

%e 2, 0;

%e 4, 1, 0;

%e 8, 4, 1, 0;

%e 16, 12, 5, 1, 0;

%e 32, 32, 18, 6, 1, 0;

%e 64, 80, 56, 25, 7, 1, 0;

%e 128, 192, 160, 88, 33, 8, 1, 0;

%e 256, 448, 432, 280, 129, 42, 9, 1, 0;

%e 512, 1024, 1120, 832, 450, 180, 52, 10, 1, 0;

%e ...

%Y Cf. A046854, A001519.

%K nonn,tabl

%O 0,2

%A _Gary W. Adamson_, Dec 24 2008

%E Second term corrected by _Philippe Deléham_, Jan 01 2009