This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A153310 Coefficient triangle sequence of a polynomial recursion: p(x,n)=(x + 1)*(p(x, n - 1) + 3^(n - 1)*x); Row sums are 2*3^n. 0
 2, 3, 3, 2, 14, 2, 2, 25, 25, 2, 2, 54, 77, 27, 2, 2, 137, 212, 104, 29, 2, 2, 382, 592, 316, 133, 31, 2, 2, 1113, 1703, 908, 449, 164, 33, 2, 2, 3302, 5003, 2611, 1357, 613, 197, 35, 2, 2, 9865, 14866, 7614, 3968, 1970, 810, 232, 37, 2, 2, 29550, 44414, 22480, 11582 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Row sums: {2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366, 118098,...}. LINKS FORMULA p(x,n)=(x + 1)*(p(x, n - 1) + 3^(n - 1)*x). EXAMPLE {2}, {3, 3}, {2, 14, 2}, {2, 25, 25, 2}, {2, 54, 77, 27, 2}, {2, 137, 212, 104, 29, 2}, {2, 382, 592, 316, 133, 31, 2}, {2, 1113, 1703, 908, 449, 164, 33, 2}, {2, 3302, 5003, 2611, 1357, 613, 197, 35, 2}, {2, 9865, 14866, 7614, 3968, 1970, 810, 232, 37, 2}, {2, 29550, 44414, 22480, 11582, 5938, 2780, 1042, 269, 39, 2} MATHEMATICA Clear[p, n, m, x]; p[x, 0] = 2; p[x, 1] = 3*x + 3; p[x, 2] = 2*x^2 + 14*x + 2; p[x_, n_] := p[x, n] = (x + 1)*(p[x, n - 1] + 3^(n - 1)*x); Table[ExpandAll[p[x, n]], {n, 0, 10}]; Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[%] CROSSREFS Sequence in context: A153288 A153479 A153489 * A155688 A215490 A153592 Adjacent sequences:  A153307 A153308 A153309 * A153311 A153312 A153313 KEYWORD nonn,uned,tabl AUTHOR Roger L. Bagula, Dec 23 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.