login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A153300 Coefficient of x^(4n)/(4n)! in the Maclaurin expansion of cm4(x), which is a generalization of the Dixon elliptic function cm(x,0) defined by A104134. 3
1, 6, 2268, 7434504, 95227613712, 3354162536029536, 264444869673131894208, 40740588107524550752746624, 11136881432872615930509713801472, 5026062205760019668688216299061782016 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..9.

FORMULA

Define sm4(x)^4 = cm4(x)^4 - 1, where sm4(x) is the g.f. of A153301, then:

d/dx cm4(x) = sm4(x)^3 ;

d/dx sm4(x) = cm4(x)^3 .

EXAMPLE

G.f.: cm4(x) = 1 + 6*x^4/4! + 2268*x^8/8! + 7434504*x^12/12! + 95227613712*x^16/16! +...

sm4(x) = x + 18*x^5/5! + 14364*x^9/9! + 70203672*x^13/13! + 1192064637456*x^17/17! +...

These functions satisfy: cm4(x)^4 - sm4(x)^4 = 1 where:

cm4(x)^4 = 1 + 24*x^4/4! + 24192*x^8/8! + 140507136*x^12/12! + 2716743794688*x^16/16 +...

RELATED EXPANSIONS:

cm4(x)^2 = 1 + 12*x^4/4! + 7056*x^8/8! + 28340928*x^12/12! + 419025809664*x^16/16! +...

sm4(x)^2 = 2*x^2/2! + 216*x^6/6! + 368928*x^10/10! + 3000945024*x^14/14! +...

cm4(x)^3 = 1 + 18*x^4/4! + 14364*x^8/8! + 70203672*x^12/12! + 1192064637456*x^16/16! +...

sm4(x)^3 = 6*x^3/3! + 2268*x^7/7! + 7434504*x^11/11! + 95227613712*x^15/15! +...

DERIVATIVES:

d/dx cm4(x) = sm4(x)^3 ;

d^2/dx^2 cm4(x) = 3*cm4(x)^3*sm4(x)^2 ;

d^3/dx^3 cm4(x) = 6*cm4(x)^6*sm4(x) + 9*cm4(x)^2*sm4(x)^5 ;

d^4/dx^4 cm4(x) = 6*cm4(x)^9 + 81*cm4(x)^5*sm4(x)^4 + 18*cm4(x)*sm4(x)^8 ;...

PROG

(PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x); for(i=0, n, A=1+intformal(intformal(A^3)^3)); n=4*n; n!*polcoeff(A, n))}

CROSSREFS

Cf. A104134; A153301, A153302 (cm4(x)^2 + sm4(x)^2).

Cf. A153303 (cm4(x)^4). [From Paul D. Hanna, Jan 03 2009]

Sequence in context: A056048 A051113 A067174 * A059203 A198403 A069643

Adjacent sequences:  A153297 A153298 A153299 * A153301 A153302 A153303

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jan 02 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 23 09:53 EST 2014. Contains 249840 sequences.