login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A153295 G.f.: A(x) = F(x*G(x)^2) where F(x) = G(x/F(x)) = 1 + x*F(x)^2 is the g.f. of A000108 (Catalan) and G(x) = F(x*G(x)) = 1 + x*G(x)^3 is the g.f. of A001764. 2
1, 1, 4, 20, 110, 638, 3828, 23515, 146972, 930869, 5958094, 38462190, 250054804, 1635421543, 10750864640, 70987129653, 470542935654, 3129729034478, 20880459397920, 139689406647522, 936832986074664, 6297064070279195 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..21.

FORMULA

a(n) = Sum_{k=0..n} C(2k+1,k)/(2k+1) * C(3n-k,n-k)*2k/(3n-k) for n>0 with a(0)=1.

G.f. satisfies: A(x) = 1 + x*G(x)^2*A(x)^2 where G(x) is the g.f. of A001764.

G.f. satisfies: A(x/F(x)) = F(x*F(x)) where F(x) is the g.f. of A000108 (Catalan).

EXAMPLE

G.f.: A(x) = F(x*G(x)^2) = 1 + x + 4*x^2 + 20*x^3 + 110*x^4 +... where

F(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...

F(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...

G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...

G(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...

G(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 +...

A(x)^2 = 1 + 2*x + 9*x^2 + 48*x^3 + 276*x^4 + 1656*x^5 +...

G(x)^2*A(x)^2 = 1 + 4*x + 20*x^2 + 110*x^3 + 638*x^4 +...

PROG

(PARI) {a(n)=if(n==0, 1, sum(k=0, n, binomial(2*k+1, k)/(2*k+1)*binomial(3*(n-k)+2*k, n-k)*2*k/(3*(n-k)+2*k)))}

CROSSREFS

Cf. A001764, A000108; A153294, A153296.

Sequence in context: A222205 A262394 A271932 * A006770 A158827 A263854

Adjacent sequences:  A153292 A153293 A153294 * A153296 A153297 A153298

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jan 15 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 22 16:10 EST 2019. Contains 320399 sequences. (Running on oeis4.)