login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A153293 G.f.: A(x) = F(x*F(x)^3) = F(F(x)-1) where F(x) = 1 + x*F(x)^3 is the g.f. of A001764. 3
1, 1, 6, 42, 317, 2508, 20517, 172180, 1474689, 12843768, 113444721, 1014062898, 9158151426, 83449247979, 766340138037, 7085966319858, 65919413472834, 616559331247512, 5794778945023698, 54700034442193302, 518375457403431600 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Robert Israel, Table of n, a(n) for n = 0..994

FORMULA

a(n) = Sum_{k=0..n} C(3k+1,k)/(3k+1) * C(3n,n-k)*k/n for n>0 with a(0)=1.

G.f. satisfies: A(x) = 1 + x*F(x)^3*A(x)^3 where F(x) is the g.f. of A001764.

G.f. satisfies: A(x/G(x)) = F(x*G(x)^2) = F(G(x)-1) where G(x) = F(x/G(x)) is the g.f. of A000108 and F(x) is the g.f. of A001764.

a(n) = sqrt(3)*Gamma(n+2/3)*Gamma(n+1/3)*hypergeom([4/3, 5/3, -n+1], [5/2, 2*n+2], -27/4)*27^n/(2*Pi*(n+1)!) for n >= 1. - Robert Israel, Dec 26 2017

EXAMPLE

G.f.: A(x) = F(x*F(x)^3) = 1 + x + 6*x^2 + 42*x^3 + 317*x^4 +... where

F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...

F(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...

F(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 + 7752*x^6 +...

MAPLE

S:= (1/2)*GAMMA(n+1/3)*GAMMA(n+2/3)*hypergeom([4/3, 5/3, -n+1], [5/2, 2*n+2], -27/4)*27^n*sqrt(3)/(Pi*GAMMA(2*n+2)):

1, seq(simplify(S), n=1..40); # Robert Israel, Dec 26 2017

PROG

(PARI) {a(n)=if(n==0, 1, sum(k=0, n, binomial(3*k+1, k)/(3*k+1)*binomial(3*(n-k)+3*k, n-k)*3*k/(3*(n-k)+3*k)))}

CROSSREFS

Cf. A001764, A000108; A153292, A153294.

Sequence in context: A034171 A264911 A244902 * A145301 A107266 A142985

Adjacent sequences:  A153290 A153291 A153292 * A153294 A153295 A153296

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jan 14 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 22 01:04 EST 2019. Contains 320381 sequences. (Running on oeis4.)