login
A153196
Numbers n such that 6*n+5 and 6*n+7 are twin primes.
2
0, 1, 2, 4, 6, 9, 11, 16, 17, 22, 24, 29, 31, 32, 37, 39, 44, 46, 51, 57, 69, 71, 76, 86, 94, 99, 102, 106, 109, 134, 136, 137, 142, 146, 169, 171, 174, 176, 181, 191, 204, 212, 214, 216, 219, 237, 241, 246, 247, 267, 269, 277, 282, 286, 297, 311, 312, 321, 324, 332
OFFSET
1,3
COMMENTS
Appears to be the partial sums of A160273 which are the successive differences (divided by 3) of the average of twin prime pairs divided by 2 (A040040). - Stephen Crowley, May 24 2009
LINKS
FORMULA
a(j) = (A001359(j+1)-5)/6.
a(j) = A002822(j)-1.
EXAMPLE
For n = 0, 6*n+5 = 5 and 6*n+7 = 7 are twin primes;
for n = 99, 6*n+5 = 599 and 6*n+7 = 601 are twin primes.
MAPLE
ZL := []; for p to 1000000 do if `and`(isprime(p), isprime(p+2)) then ZL := [op(ZL), ((p+2)^2-p^2)*(1/8)] end if end do; A160273 := [seq((ZL[i+1]-ZL[i])*(1/3), i = 2 .. nops(ZL)-1)]: ListTools[PartialSums]( A160273 ); # Stephen Crowley, May 24 2009
MATHEMATICA
Select[Range[0, 350], PrimeQ[6 # + 5]&&PrimeQ[6 # + 7]&] (* Vincenzo Librandi, Apr 04 2013 *)
PROG
(Magma) [ n: n in [0..335] | IsPrime(6*n+5) and IsPrime(6*n+7) ];
CROSSREFS
Cf. A001359 (lesser of twin primes), A002822 (6n-1, 6n+1 are twin primes).
Cf. A037074. - Vincenzo Librandi, Dec 26 2008
Sequence in context: A303331 A233776 A195526 * A247185 A237685 A220768
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Dec 20 2008
EXTENSIONS
Edited and extended by Klaus Brockhaus, Dec 26 2008
STATUS
approved