login
A153191
a(n) = 9*a(n-1) + 6*a(n-2); a(0)=0, a(1)=1.
2
0, 1, 9, 87, 837, 8055, 77517, 745983, 7178949, 69086439, 664851645, 6398183439, 61572760821, 592543948023, 5702332097133, 54876252562335, 528100265643813, 5082159906168327, 48908040749377821, 470665326181410351
OFFSET
0,3
FORMULA
G.f.: x/(1 - 9*x - 6*x^2).
MAPLE
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=9*a[n-1]+6*a[n-2]od: seq(a[n], n=0..33);
MATHEMATICA
LinearRecurrence[{9, 6}, {0, 1}, 25] (* G. C. Greubel, Jan 24 2018 *)
PROG
(Sage) [lucas_number1(n, 9, -6) for n in range(0, 25)]# Zerinvary Lajos, Apr 26 2009
(PARI) x='x+O('x^25); concat([0], Vec(x/(1-9*x-6*x^2))) \\ G. C. Greubel, Jan 24 2018
(Magma) I:=[0, 1]; [n le 2 select I[n] else 9*Self(n-1) + 6*Self(n-2): n in [1..25]]; // G. C. Greubel, Jan 24 2018
CROSSREFS
Sequence in context: A055725 A219123 A144852 * A223277 A267265 A152264
KEYWORD
nonn
AUTHOR
Zerinvary Lajos, Dec 20 2008
EXTENSIONS
Formula corrected by Philippe Deléham, Dec 20 2008
Edited by N. J. A. Sloane, Dec 21 2008
STATUS
approved