login
Numbers k such that 3*k + 2 is not prime.
8

%I #31 Sep 08 2022 08:45:39

%S 2,4,6,8,10,11,12,14,16,18,20,21,22,24,25,26,28,30,31,32,34,36,38,39,

%T 40,41,42,44,46,47,48,50,51,52,53,54,56,58,60,61,62,64,66,67,68,69,70,

%U 71,72,73,74,76,78,80,81,82,84,86,88,90,91,92,94,95,96,98,99,100,101,102

%N Numbers k such that 3*k + 2 is not prime.

%C Contains the positive even numbers (A005843) and the odd numbers of the form 2*A059324(.) + 1. - _R. J. Mathar_, Nov 27 2010

%C Numbers k such that (3*k)!/(3*k + 2) is an integer. - _Peter Bala_, Jan 25 2017

%H Vincenzo Librandi, <a href="/A153170/b153170.txt">Table of n, a(n) for n = 1..1000</a>

%e Distribution of the odd terms in the following triangular array:

%e *;

%e *, *;

%e *, 11, *;

%e *, *, *, *;

%e *, *, 25, *, *;

%e *, 21, *, *, 47, *;

%e *, *, *, *, *, *, *;

%e *, *, 39, *, *, 73, *, *;

%e *, 31, *, *, 69, *, *, 107, *;

%e *, *, *, *, *, *, *, *, *, *;

%e *, *, 53, *, *, 99, *, *, 145, *, *;

%e *, 41, *, *, 91, *, *, 141, *, *, 191, *;

%e etc., where * marks the noninteger values of (4*h*k + 2*k + 2*h - 1)/3 with h >= k >= 1. - _Vincenzo Librandi_, Jan 15 2013

%p for n from 0 to 100 do

%p if irem(factorial(3*n), 3*n+2) = 0 then print(n); end if;

%p end do: # _Peter Bala_, Jan 25 2017

%t Select[Range[1, 200], !PrimeQ[3*# + 2] &] (* _Vincenzo Librandi_, Oct 11 2012 *)

%o (PARI) for(n=1,200,if(!isprime(3*n+2), print1(n,", "))) \\ _Joerg Arndt_, Nov 27 2010

%o (Magma) [n: n in [1..110] | not IsPrime(3*n + 2)]; // _Vincenzo Librandi_, Oct 11 2012

%Y Cf. A024893, A014076, A045751, A095277, A153088, A153329, A153343.

%K nonn,easy

%O 1,1

%A _Vincenzo Librandi_, Dec 20 2008

%E Edited by _N. J. A. Sloane_, Jun 23 2010