The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A153122 G.f.: 1/p(x) where p(x)=x^5 + 2x^4 - 2x^3 - x^2 + 2x - 1. 0
 1, -2, 6, -15, 38, -95, 237, -590, 1468, -3651, 9079, -22575, 56131, -139563, 347004, -862774, 2145156, -5333599, 13261165, -32971820, 81979285, -203828691, 506788203, -1260049698, 3132916721, -7789507968, 19367394583, -48154000782 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n)/a(n-1) tends to the approximation to Feigenbaum's constant mentioned in A103546. = 2.48634376497....;. LINKS Weisstein, Eric W. Feigenbaum Constant.  Equation (11). Index entries for linear recurrences with constant coefficients, signature (-2,2,1,-2,1). FORMULA p(x)=x^5 + 2x^4 - 2x^3 - x^2 + 2x - 1; a(n)=coefficient_expansion(1/(x^5*p(1/x))). MATHEMATICA f[x_] = x^5 + 2x^4 - 2x^3 - x^2 + 2x - 1; g[x] = ExpandAll[x^5*f[1/x]]' a = Table[SeriesCoefficient[Series[1/g[x], {x, 0, 50}], n], {n, 0, 50}] CROSSREFS Cf. A103546. Sequence in context: A260787 A290762 A106515 * A109545 A191634 A120846 Adjacent sequences:  A153119 A153120 A153121 * A153123 A153124 A153125 KEYWORD sign,easy AUTHOR Roger L. Bagula and Gary W. Adamson, Dec 18 2008 EXTENSIONS Edited by N. J. A. Sloane, Dec 19 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 00:40 EST 2020. Contains 331030 sequences. (Running on oeis4.)