login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A153110 Period 6: repeat [1, 5, 7, 2, 4, 8]. 4
1, 5, 7, 2, 4, 8, 1, 5, 7, 2, 4, 8, 1, 5, 7, 2, 4, 8, 1, 5, 7, 2, 4, 8, 1, 5, 7, 2, 4, 8, 1, 5, 7, 2, 4, 8, 1, 5, 7, 2, 4, 8, 1, 5, 7, 2, 4, 8, 1, 5, 7, 2, 4, 8, 1, 5, 7, 2, 4, 8, 1, 5, 7, 2, 4, 8, 1, 5, 7, 2, 4, 8, 1, 5, 7, 2, 4, 8, 1, 5, 7, 2, 4, 8, 1, 5, 7, 2, 4, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Also A141425^5 mod 9. See A020806.

Terms of the simple continued fraction of 163/(4*sqrt(32370)-607). Decimal expansion of 4614/37037. - Paolo P. Lava, Feb 17 2009

LINKS

Table of n, a(n) for n=0..89.

Index entries for linear recurrences with constant coefficients, signature (-1,0,1,1).

FORMULA

a(n) = (1/30)*{44*(n mod 6)+4*[(n+1) mod 6]-[(n+2) mod 6]+4*[(n+3) mod 6]-[(n+4) mod 6]+4*[(n+5) mod 6]}. - Paolo P. Lava, Dec 22 2008

From R. J. Mathar, Mar 08 2011: (Start)

a(n) = - a(n-1) + a(n-3) + a(n-4) for n>3.

G.f.: (2*x+1)^3 / ( (1-x)*(1+x)*(1+x+x^2) ). (End)

a(n) = (9-cos(n*Pi)-4*sqrt(3)*cos((1-4*n)*Pi/6))/2. - Wesley Ivan Hurt, Jun 17 2016

MAPLE

A153110:=n->(9-cos(n*Pi)-4*sqrt(3)*cos((1-4*n)*Pi/6))/2: seq(A153110(n), n=0..100); # Wesley Ivan Hurt, Jun 17 2016

MATHEMATICA

PadLeft[{}, 90, {1, 5, 7, 2, 4, 8}] (* Harvey P. Dale, Sep 10 2011 *)

PROG

(PARI) a(n)=[1, 2, 4, 5, 7, 8][n%6+1] \\ Charles R Greathouse IV, Jun 02 2011

(MAGMA) &cat[[1, 5, 7, 2, 4, 8]: n in [0..20]]; // Wesley Ivan Hurt, Jun 17 2016

CROSSREFS

Cf. A020806, A038194, A141425.

Sequence in context: A021640 A155968 A154479 * A099283 A019987 A072097

Adjacent sequences:  A153107 A153108 A153109 * A153111 A153112 A153113

KEYWORD

nonn,easy

AUTHOR

Paul Curtz, Dec 18 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 28 08:24 EDT 2017. Contains 288813 sequences.