This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A153037 a(n) = 2*n^2 + 16*n + 23. 3
 23, 41, 63, 89, 119, 153, 191, 233, 279, 329, 383, 441, 503, 569, 639, 713, 791, 873, 959, 1049, 1143, 1241, 1343, 1449, 1559, 1673, 1791, 1913, 2039, 2169, 2303, 2441, 2583, 2729, 2879, 3033, 3191, 3353, 3519, 3689, 3863, 4041, 4223, 4409, 4599, 4793, 4991 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Sixth diagonal of triangle A154685. Numbers of the form 2*k^2 - 9. - Bruno Berselli, Oct 30 2012 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 22 2012 G.f.: (23 - 28*x + 9*x^2)/(1-x)^3. - Vincenzo Librandi, Jan 04 2013 MATHEMATICA Table[2*n^2 + 16*n + 23, {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Feb 03 2012 *) LinearRecurrence[{3, -3, 1}, {23, 41, 63}, 50] (* Vincenzo Librandi, Feb 22 2012 *) CoefficientList[Series[(23 - 28*x  +9*x^2)/(1 -x)^3, {x, 0, 60}], x] (* Vincenzo Librandi, Jan 04 2013 *) PROG (PARI) a(n)=2*n^2+16*n+23 \\ Charles R Greathouse IV, Jan 11 2012 (MAGMA) I:=[23, 41, 63]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 22 2012 CROSSREFS Cf. A153039, A154685. Sequence in context: A301623 A163635 A083444 * A106970 A155702 A114379 Adjacent sequences:  A153034 A153035 A153036 * A153038 A153039 A153040 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Jan 25 2009 EXTENSIONS Erroneously duplicated terms removed by Vincenzo Librandi, Feb 22 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 22:34 EDT 2019. Contains 328335 sequences. (Running on oeis4.)