login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152947 a(n) = 1+(n-2)*(n-1)/2. 8

%I

%S 1,1,2,4,7,11,16,22,29,37,46,56,67,79,92,106,121,137,154,172,191,211,

%T 232,254,277,301,326,352,379,407,436,466,497,529,562,596,631,667,704,

%U 742,781,821,862,904,947,991,1036,1082,1129,1177,1226,1276,1327,1379

%N a(n) = 1+(n-2)*(n-1)/2.

%C The sequence is the sum of upward sloping terms in an infinite lower triangle with 1's in the leftmost column and the odd integers in all other columns. - _Gary W. Adamson_, Jan 29 2014

%C For n > 1, if Kruskal's algorithm is run on a weighted connected graph of n nodes, then a(n) is the maximum number of iterations required to reach a spanning tree. - _Eric M. Schmidt_, Jun 04 2016

%C It can be observed that A152947/A000079, whose reduced numerators are A213671, is identical to its inverse binomial transform (except for signs); this shows that it is an "autosequence" (more precisely, an autosequence of the second kind). - _Jean-Fran├žois Alcover_ (this remark is due to _Paul Curtz_), Jun 20 2016

%H H. Cheballah, S. Giraudo, R. Maurice, <a href="http://arxiv.org/abs/1306.6605">Combinatorial Hopf algebra structure on packed square matrices</a>, arXiv preprint arXiv:1306.6605 [math.CO], 2013.

%H Michael Dairyko, Samantha Tyner, Lara Pudwell, Casey Wynn, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v19i3p22/0">Non-contiguous pattern avoidance in binary trees</a>, Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227.

%H Lara Pudwell, <a href="http://faculty.valpo.edu/lpudwell/slides/notredame.pdf">Pattern avoidance in trees</a> (slides from a talk, mentions many sequences), http://faculty.valpo.edu/lpudwell/slides/notredame.pdf, 2012.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = 1 + A000217(n-2) = A000124(n-2), n > 1. - _R. J. Mathar_, Jan 03 2009

%F a(n) = a(n-1) + n - 2 for n>1, a(1) = 1. - _Vincenzo Librandi_, Nov 26 2010

%F G.f.: -x*(1-2*x+2*x^2)/(x-1)^3. - _R. J. Mathar_, Nov 28 2010

%F From _Ilya Gutkovskiy_, Jun 04 2016: (Start)

%F E.g.f.: (4 - 2*x + x^2)*exp(x)/2 - 2.

%F Sum_{n>=1} 1/a(n) = 2*Pi*tanh(sqrt(7)*Pi/2)/sqrt(7) + 1 = A226985 + 1. (End)

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3. - _Wesley Ivan Hurt_, Jun 20 2016

%p A152947:=n->1+(n-2)*(n-1)/2: seq(A152947(n), n=1..100); # _Wesley Ivan Hurt_, Jun 20 2016

%t Table[1 + (n^2 - 3n + 2)/2, {n, 50}] (* _Alonso del Arte_, Jan 30 2014 *)

%o (Sage) [1+binomial(n,2) for n in xrange(0, 54)] # _Zerinvary Lajos_, Mar 12 2009

%o (MAGMA) [1+(n-2)*(n-1)/2: n in [1..60]]; // _Klaus Brockhaus_, Nov 28 2010

%o (PARI) a(n)=1+(n-2)*(n-1)/2 \\ _Charles R Greathouse IV_, Oct 07 2015

%Y Cf. A000124, A000217, A226985.

%K nonn,easy

%O 1,3

%A _Vladimir Joseph Stephan Orlovsky_, Dec 15 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 02:36 EST 2016. Contains 278959 sequences.