login
A vector recursion designed around a factorial row sum : v(n)=if[odd,{1.n,n^2,...,n!-Sum[2^m,{m,0,n/2-1}],n!-Sum2^m,{m,0,n/2-1}],...n^2.n,1}],if[ even{1.n,n^2,...,n!-2Sum[2^m,{m,0,n/2-1}],...n^2.n,1}].
0

%I #2 Mar 30 2012 17:34:28

%S 1,1,1,1,0,1,1,2,2,1,1,4,14,4,1,1,5,54,54,5,1,1,6,36,634,36,6,1,1,7,

%T 49,2463,2463,49,7,1,1,8,64,512,39150,512,64,8,1,1,9,81,729,180620,

%U 180620,729,81,9,1,1,10,100,1000,10000,3606578,10000,1000,100,10,1

%N A vector recursion designed around a factorial row sum : v(n)=if[odd,{1.n,n^2,...,n!-Sum[2^m,{m,0,n/2-1}],n!-Sum2^m,{m,0,n/2-1}],...n^2.n,1}],if[ even{1.n,n^2,...,n!-2Sum[2^m,{m,0,n/2-1}],...n^2.n,1}].

%C Row sums are:

%C {1, 2, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800,...}.

%C This designed symmetrical triangle is meant to be like the Eulerian numbers

%C in row sum ( the Stirling numbers of the first kind also have factorial row sums).

%F v(n)=if[odd,{1.n,n^2,...,n!-Sum[2^m,{m,0,n/2-1}],n!-Sum2^m,{m,0,n/2-1}],...n^2.n,1}],

%F if[ even{1.n,n^2,...,n!-2Sum[2^m,{m,0,n/2-1}],...n^2.n,1}].

%e {1},

%e {1, 1},

%e {1, 0, 1},

%e {1, 2, 2, 1},

%e {1, 4, 14, 4, 1},

%e {1, 5, 54, 54, 5, 1},

%e {1, 6, 36, 634, 36, 6, 1},

%e {1, 7, 49, 2463, 2463, 49, 7, 1},

%e {1, 8, 64, 512, 39150, 512, 64, 8, 1},

%e {1, 9, 81, 729, 180620, 180620, 729, 81, 9, 1},

%e {1, 10, 100, 1000, 10000, 3606578, 10000, 1000, 100, 10, 1}

%t Clear[v, n]; v[0] = {1}; v[1] = {1, 1};

%t v[n_] := v[n] = If[Mod[n, 2] == 0, Join[Table[ n^m, {m,0, Floor[n/2] - 1}], {n! - 2*Sum[ n^m, {m, 0, Floor[n/2] - 1}]}, Table[ n^m, {m, Floor[n/2] - 1, 0, -1}]],

%t Join[Table[ n^m, {m, 0, Floor[n/2] - 1}], {n!/2 - Sum[ n^m, {m, 0,Floor[n/2] - 1}], n!/2 - Sum[ n^m, {m, 0, Floor[n/2] - 1}]}, Table[ n^m, {m, Floor[n/2] - 1, 0, -1}]]]'

%t Table[v[n], {n, 0, 10}];

%t Flatten[%]

%K nonn,tabl

%O 0,8

%A _Roger L. Bagula_, Dec 15 2008