

A152925


a(n) = smallest number m such that in 1,2,..,m written in base n, no two of the n digits occurs the same number of times.


0



1, 5, 13, 47, 105, 536, 1341, 9231, 24697, 212594, 592269, 6100559, 17464969, 209215572
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,2


LINKS

Table of n, a(n) for n=2..15.


EXAMPLE

In base 5 in 1,2,..,142_5 = 47, digit 1 occurs 43 times, 2 occurs 20, 3 occurs 19 times, 4 occurs 17 times, and 0 occurs 14.


PROG

(Python)
.def different(d):
..for i in range(len(d)):
...for j in range(0, i):
....if d[i] == d[j]:
.....return False
..return True
.. def a(base):
..d = [0] * base
..n = 0
..while True:
...n = n + 1
...m = n
...while m > 0:
....d[m % base] = d[m % base] + 1
....m = m / base
...if different(d):
.break
..return n


CROSSREFS

Sequence in context: A060050 A217892 A194639 * A304964 A120790 A162563
Adjacent sequences: A152922 A152923 A152924 * A152926 A152927 A152928


KEYWORD

nonn,base


AUTHOR

Jan Fricke (fricke(AT)mathematik.unisiegen.de), Dec 15 2008


EXTENSIONS

Edited by Franklin T. AdamsWatters, Sep 11 2011


STATUS

approved



