|
|
A152912
|
|
Primes p such that 2*p^2-1 is not prime.
|
|
1
|
|
|
5, 19, 23, 29, 31, 37, 47, 53, 61, 67, 71, 79, 83, 89, 97, 101, 103, 107, 131, 139, 149, 151, 163, 167, 173, 191, 193, 223, 227, 229, 233, 239, 241, 257, 269, 271, 281, 283, 307, 313, 317, 331, 337, 347, 349, 359, 373, 383, 389, 397, 401, 421, 431, 439, 443
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Primes not in A106483. Primes p such that 2p^2-1 is not in A092057. - R. J. Mathar, Dec 19 2008
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
|
|
MAPLE
|
a := proc (n) if isprime(n) = true and isprime(2*n^2-1) = false then n else end if end proc: seq(a(n), n = 1 .. 500); # Emeric Deutsch, Jan 02 2009
|
|
MATHEMATICA
|
Select[Prime[Range[100]], !PrimeQ[2 #^2 - 1] &] (* Vincenzo Librandi, Aug 30 2012 *)
|
|
PROG
|
(MAGMA) [p: p in PrimesUpTo(500)|not IsPrime(2*p^2-1)] // Vincenzo Librandi, Aug 30 2012
|
|
CROSSREFS
|
Cf. A092057, A106483, A007588.
Sequence in context: A275954 A087840 A074229 * A191054 A097934 A191609
Adjacent sequences: A152909 A152910 A152911 * A152913 A152914 A152915
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Vincenzo Librandi, Dec 15 2008
|
|
EXTENSIONS
|
Definition clarified by R. J. Mathar, Dec 19 2008
Extended by Emeric Deutsch, Jan 02 2009
|
|
STATUS
|
approved
|
|
|
|