OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1).
FORMULA
a(n+5) = a(n) with a(0) = a(1) = 3, a(2) = a(3) = 0 and a(4) = 4.
O.g.f: ((3+3*z+4*z^4)/(1-z^5)).
a(n) = 2+(1/2+7/10*5^(1/2))*cos(2*n*Pi/5)+(-1/10*2^(1/2)*(5+5^(1/2))^(1/2))*sin(2*n*Pi/5)+(1/2-7/10*5^(1/2))*cos(4*n*Pi/5)+(-1/10*2^(1/2)*(5-5^(1/2))^(1/2))*sin(4*n*Pi/5).
a(n) = [(n-2)^3 -(n-2)^2] mod 5. [Gary Detlefs, Mar 20 2010]
MATHEMATICA
PadRight[{}, 120, {3, 3, 0, 0, 4}] (* Harvey P. Dale, Sep 17 2018 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Dec 14 2008
STATUS
approved