This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152892 Periodic sequence [0,3,1,0,1] of period 5 2
 0, 3, 1, 0, 1, 0, 3, 1, 0, 1, 0, 3, 1, 0, 1, 0, 3, 1, 0, 1, 0, 3, 1, 0, 1, 0, 3, 1, 0, 1, 0, 3, 1, 0, 1, 0, 3, 1, 0, 1, 0, 3, 1, 0, 1, 0, 3, 1, 0, 1, 0, 3, 1, 0, 1, 0, 3, 1, 0, 1, 0, 3, 1, 0, 1, 0, 3, 1, 0, 1, 0, 3, 1, 0, 1, 0, 3, 1, 0, 1, 0, 3, 1, 0, 1, 0, 3, 1, 0, 1, 0, 3, 1, 0, 1, 0, 3, 1, 0, 1, 0, 3, 1, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA a(n+5) = a(n) with a(0) = a(3) = 0, a(1) = 3 and a(2) = a(4) = 1 ; o.g.f f(z) = ((3*z+z^2+z^4)/(1-z^5)) ; a(n) = 1+(-1/2+3/10*5^(1/2))*cos(2*n*Pi/5)+(1/5*2^(1/2)*(5+5^(1/2))^(1/2)+1/10*2^(1/2)*(5-5^(1/2))^(1/2))*sin(2*n*Pi/5)+(-1/2-3/10*5^(1/2))*cos(4*n*Pi/5)+(-1/10*2^(1/2)*(5+5^(1/2))^(1/2)+1/5*2^(1/2)*(5-5^(1/2))^(1/2))*sin(4*n*Pi/5) a(n)=(1/10)*{3*(n mod 5)-[(n+1) mod 5]+3*[(n+2) mod 5]+5*[(n+3) mod 5]-5*[(n+4) mod 5]}, with n>=0 [From Paolo P. Lava, Dec 15 2008] a(n) = (n^3+2*n^2)mod 5 [From Gary Detlefs, Mar 20 2010] MAPLE seq((n^3+2*n^2)mod 5, n=0..50); [From Gary Detlefs, Mar 20 2010] CROSSREFS 026053, A026068 Sequence in context: A120080 A111700 A060096 * A193002 A181116 A051834 Adjacent sequences:  A152889 A152890 A152891 * A152893 A152894 A152895 KEYWORD easy,nonn AUTHOR Richard Choulet, Dec 14 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .