OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1).
FORMULA
a(n+5) = a(n) with a(0) = a(3) = 0, a(1) = 3 and a(2) = a(4) = 1.
O.g.f: ((3*z+z^2+z^4)/(1-z^5)).
a(n) = 1 + (-1/2 + (3/10)*sqrt(5))*cos(2*n*Pi/5) + ((1/5)*sqrt(2)*sqrt(5 + sqrt(5)) + (1/10)*sqrt(2)*sqrt(5 - sqrt(5)))*sin(2*n*Pi/5) + (-1/2 - (3/10)*sqrt(5))*cos(4*n*Pi/5) + (-(1/10)*sqrt(2)*sqrt(5 + sqrt(5)) + (1/5)*sqrt(2)*sqrt(5-sqrt(5)))*sin(4*n*Pi/5).
a(n) = (n^3 + 2*n^2) mod 5. - Gary Detlefs, Mar 20 2010
MAPLE
seq((n^3+2*n^2)mod 5, n=0..50); # Gary Detlefs, Mar 20 2010
MATHEMATICA
PadRight[{}, 120, {0, 3, 1, 0, 1}] (* Harvey P. Dale, Oct 04 2016 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Dec 14 2008
STATUS
approved