

A152885


Number of descents beginning and ending with an odd number in all permutations of {1,2,...,n}.


2



0, 0, 2, 6, 72, 360, 4320, 30240, 403200, 3628800, 54432000, 598752000, 10059033600, 130767436800, 2440992153600, 36614882304000, 753220435968000, 12804747411456000, 288106816757760000, 5474029518397440000
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

a(n) is also number of descents beginning with an odd number and ending with an even number in all permutations of {1,2,...,n}. Example: a(4)=6; indeed for n=4 the only descent to be counted is 32, occurring only in 1324, 1432, 4132, 3214, 3241 and 4321.


LINKS

Table of n, a(n) for n=1..20.


FORMULA

a(2n) = (2n1)!*binomial(n,2); a(2n+1) = (2n)!*binomial(n+1,2).


EXAMPLE

a(6)=360 because (i) the descent pairs can be chosen in binomial(3,2)=3 ways, namely (3,1), (5,1), (5,3); (ii) they can be placed in 5 positions, namely (1,2),(2,3),(3,4),(4,5),(5,6); (iii) the remaining 4 entries can be permuted in 4!=24 ways; 3*5*24=360.


MAPLE

a := proc (n) if `mod`(n, 2) = 0 then (1/4)*factorial(n)*((1/2)*n1) else (1/8)*(n1)*(n+1)*factorial(n1) end if end proc: seq(a(n), n = 1 .. 20);


CROSSREFS

Cf. A152886, A152887.
Sequence in context: A195690 A329965 A171582 * A295182 A052613 A156493
Adjacent sequences: A152882 A152883 A152884 * A152886 A152887 A152888


KEYWORD

nonn


AUTHOR

Emeric Deutsch, Jan 19 2009


STATUS

approved



