This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152885 Number of descents beginning and ending with an odd number in all permutations of {1,2,...,n}. 2
 0, 0, 2, 6, 72, 360, 4320, 30240, 403200, 3628800, 54432000, 598752000, 10059033600, 130767436800, 2440992153600, 36614882304000, 753220435968000, 12804747411456000, 288106816757760000, 5474029518397440000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS a(n) is also number of descents beginning with an odd number and ending with an even number in all permutations of {1,2,...,n}. Example: a(4)=6; indeed for n=4 the only descent to be counted is 32, occurring only in 1324, 1432, 4132, 3214, 3241 and 4321. LINKS FORMULA a(2n) = (2n-1)!*binomial(n,2); a(2n+1) = (2n)!*binomial(n+1,2). EXAMPLE a(6)=360 because (i) the descent pairs can be chosen in binomial(3,2)=3 ways, namely (3,1), (5,1), (5,3); (ii) they can be placed in 5 positions, namely (1,2),(2,3),(3,4),(4,5),(5,6); (iii) the remaining 4 entries can be permuted in 4!=24 ways; 3*5*24=360. MAPLE a := proc (n) if `mod`(n, 2) = 0 then (1/4)*factorial(n)*((1/2)*n-1) else (1/8)*(n-1)*(n+1)*factorial(n-1) end if end proc: seq(a(n), n = 1 .. 20); CROSSREFS Cf. A152886, A152887. Sequence in context: A195690 A329965 A171582 * A295182 A052613 A156493 Adjacent sequences:  A152882 A152883 A152884 * A152886 A152887 A152888 KEYWORD nonn AUTHOR Emeric Deutsch, Jan 19 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 00:16 EST 2019. Contains 329812 sequences. (Running on oeis4.)