login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152879 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having k peaks of maximum height (1 <= k <= n). 1
1, 1, 1, 3, 1, 1, 8, 4, 1, 1, 23, 12, 5, 1, 1, 71, 36, 17, 6, 1, 1, 229, 114, 54, 23, 7, 1, 1, 759, 377, 176, 78, 30, 8, 1, 1, 2566, 1279, 596, 263, 109, 38, 9, 1, 1, 8817, 4408, 2070, 912, 382, 148, 47, 10, 1, 1, 30717, 15375, 7289, 3240, 1358, 541, 196, 57, 11, 1, 1, 108278 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Row sums are the Catalan numbers (A000108).

T(n,1) = A152880(n).

Sum_{k=1..n} k*T(n,k) = A152880(n+1).

LINKS

Table of n, a(n) for n=1..67.

FORMULA

G.f. = G(t,z) = Sum_{j>=1}tz^j/(f(j)(f(j)-tzf(j-1))), where the f(j)'s are the Fibonacci polynomials (in z) defined by f(0)=f(1)=1, f(j) = f(j-1) - zf(j-2), j>=2 (Sergi Elizalde).

EXAMPLE

T(4,2)=4 because we have UU(UD)(UD)DD, U(UD)DU(UD)D, U(UD)(UD)DUD and UDU(UD)(UD)D, where U=(1,1), D=(1,-1), with the peaks of maximum height shown between parentheses.

Triangle starts:

   1;

   1,  1;

   3,  1,  1;

   8,  4,  1,  1;

  23, 12,  5,  1,  1;

  71, 36, 17,  6,  1,  1;

MAPLE

f[0] := 1: f[1] := 1: for i from 2 to 20 do f[i] := sort(expand(f[i-1]-z*f[i-2])) end do: G := sum(t*z^j/(f[j]*(f[j]-t*z*f[j-1])), j = 1 .. 20): Gser := simplify(series(G, z = 0, 17)): for n to 12 do P[n] := sort(coeff(Gser, z, n)) end do: for n to 12 do seq(coeff(P[n], t, k), k = 1 .. n) end do; # yields sequence in triangular form

CROSSREFS

Cf. A000108, A152880.

Sequence in context: A203717 A143953 A114276 * A098747 A122897 A117425

Adjacent sequences:  A152876 A152877 A152878 * A152880 A152881 A152882

KEYWORD

nonn,tabl

AUTHOR

Emeric Deutsch, Jan 02 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 23 06:11 EDT 2017. Contains 290958 sequences.