login
A152852
Numbers with all different digits such that each digit leaves the same nonzero remainder when each is divided into the number.
0
289, 379, 386, 469, 649, 673, 674, 869, 938, 2437, 4873, 23689, 24697, 27469, 28369, 32689, 36289, 36794, 42673, 46873, 47629, 62497, 62749, 63289, 68329, 79634, 82369, 84673, 86329, 93746, 348769, 364897, 376489, 487369, 673849, 684937, 689473, 736849, 837649, 843697
OFFSET
1,1
COMMENTS
Subsequence of A152824. The sequence contains exactly 40 terms.
EXAMPLE
869 == 5 (mod 8) == 5 (mod 6) == 5 (mod 9).
MATHEMATICA
Select[Range[845000], FreeQ[IntegerDigits[#], 0]&&Max[DigitCount[#]]==1&&Length[ Union[Mod[#, IntegerDigits[#]]]]==1&&Mod[#, IntegerDigits[#][[1]]]> 0&] (* Harvey P. Dale, Jun 28 2020 *)
CROSSREFS
Cf. A152824.
Sequence in context: A229906 A008367 A287934 * A156572 A157990 A261111
KEYWORD
nonn,base,full,fini
AUTHOR
Pierre CAMI, Dec 14 2008
EXTENSIONS
a(5) corrected and all remaining terms provided by Jon E. Schoenfield and Zak Seidov, Dec 14 2008
STATUS
approved